metadata
title: Multi-Agent RAG System
emoji: 🤖
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 8000
pinned: false
license: mit
Multi-Agent RAG System
A production-grade Retrieval-Augmented Generation system using multiple specialized AI agents.
Features
- Router Agent: Classifies queries and routes to appropriate agents
- Retriever Agent: Semantic search using FAISS vector store
- Reasoning Agent: Generates grounded responses from context
- Action Agent: Executes actions like creating tickets
API Endpoints
POST /api/v1/query- Submit a questionPOST /api/v1/ingest- Ingest documentsGET /api/v1/health- Health checkGET /docs- Swagger UI
Usage
import requests
response = requests.post(
"https://your-space.hf.space/api/v1/query",
json={"query": "How do I reset my password?"}
)
print(response.json()["answer"])
Architecture
User Query → Router Agent → Retriever Agent → Reasoning Agent → Response
↓
FAISS Vector Store
Built with LangChain, FastAPI, and HuggingFace models.