--- title: Multi-Agent RAG System emoji: 🤖 colorFrom: blue colorTo: purple sdk: docker app_port: 8000 pinned: false license: mit --- # Multi-Agent RAG System A production-grade Retrieval-Augmented Generation system using multiple specialized AI agents. ## Features - **Router Agent**: Classifies queries and routes to appropriate agents - **Retriever Agent**: Semantic search using FAISS vector store - **Reasoning Agent**: Generates grounded responses from context - **Action Agent**: Executes actions like creating tickets ## API Endpoints - `POST /api/v1/query` - Submit a question - `POST /api/v1/ingest` - Ingest documents - `GET /api/v1/health` - Health check - `GET /docs` - Swagger UI ## Usage ```python import requests response = requests.post( "https://your-space.hf.space/api/v1/query", json={"query": "How do I reset my password?"} ) print(response.json()["answer"]) ``` ## Architecture ``` User Query → Router Agent → Retriever Agent → Reasoning Agent → Response ↓ FAISS Vector Store ``` Built with LangChain, FastAPI, and HuggingFace models.