Certifiedloverboy
Add SAWP-20 benchmark dataset with ground truth code solutions, schematics, and problem descriptions
be06037
| # Parameters configuration | |
| import openseespy.opensees as ops # Import OpenSeesPy for structural analysis | |
| import opsvis as opsv # Import opsvis for visualization | |
| import matplotlib.pyplot as plt # Import Matplotlib for plotting | |
| ops.wipe() # Clear any existing model | |
| ops.model('basic', '-ndm', 2, '-ndf', 3) # Define a 2D model with 3 degrees of freedom per node (DOF) | |
| # Column and brace lengths | |
| colL, girL = 4.0, 6.0 | |
| # Section properties: cross-sectional area (A) and moment of inertia (Iz) | |
| Acol, Abrace, Agir = 2.0e-3, 6.0e-3, 6.0e-3 | |
| IzCol, IzBrace, IzGir = 1.6e-5, 5.4e-5, 5.4e-5 | |
| # Young's modulus (E) | |
| E = 200.0e9 | |
| # External horizontal load | |
| P = 2.0e3 | |
| # Define the material property dictionary for columns and girders | |
| Ep = { | |
| 1: [E, Acol, IzCol], # Element 1 is a column on the left | |
| 2: [E, Acol, IzCol], # Element 2 is a column on the right | |
| 3: [E, Agir, IzGir], # Element 3 is a girder | |
| 4: [E, Agir, IzGir], # Element 4 is a diagonal member on the left | |
| 5: [E, Agir, IzGir] # Element 5 is a diagonal member on the right | |
| } | |
| # Define the node coordinates | |
| ops.node(1, 0, 0) # Node 1 at (0, 0) - Left bottom support | |
| ops.node(2, 6.0, 0) # Node 2 at (6.0, 0) - Right bottom support | |
| ops.node(3, 0, 4.0) # Node 3 at (0, 4.0) - Left top | |
| ops.node(4, 6.0, 4.0) # Node 4 at (6.0, 4.0) - Right top | |
| ops.node(5, -4.0, 0) # Node 5 at (-4.0, 0) - Left diagonal support | |
| ops.node(6, 10.0, 0) # Node 6 at (10.0, 0) - Right diagonal support | |
| # Define boundary conditions (supports) | |
| ops.fix(1, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 1 | |
| ops.fix(2, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 2 | |
| ops.fix(5, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 5 | |
| ops.fix(6, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 6 | |
| # Plot the model before defining elements | |
| opsv.plot_model() | |
| # Add title | |
| plt.title('plot_model before defining elements') | |
| # Define transformation type for elements (Linear) | |
| ops.geomTransf('Linear', 1) | |
| # Define column and girder elements (elastic beam-column elements) | |
| ops.element('elasticBeamColumn', 1, 1, 3, Acol, E, IzCol, 1) # Column element 1: Node 1 to Node 3 | |
| ops.element('elasticBeamColumn', 2, 2, 4, Acol, E, IzCol, 1) # Column element 2: Node 2 to Node 4 | |
| ops.element('elasticBeamColumn', 3, 3, 4, Agir, E, IzGir, 1) # Girder element 3: Node 3 to Node 4 | |
| ops.element('elasticBeamColumn', 4, 3, 5, Agir, E, IzGir, 1) # Diagonal element 4: Node 3 to Node 5 | |
| ops.element('elasticBeamColumn', 5, 4, 6, Agir, E, IzGir, 1) # Diagonal element 5: Node 4 to Node 6 | |
| # Define external loads | |
| Px = 2e3 # Point load in x-direction | |
| # Create a dictionary to store element loads | |
| Ew = {} | |
| # Define time series for constant loads | |
| ops.timeSeries('Constant', 1) | |
| # Define load pattern using the constant time series | |
| ops.pattern('Plain', 1, 1) | |
| # Applying point loads | |
| ops.load(3, Px, 0.0, 0.0) # Apply Px at node 3 in the x-direction | |
| # Applying distributed loads | |
| for etag in Ew: | |
| ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2]) | |
| # Analysis settings | |
| ops.constraints('Transformation') # Apply transformation constraints | |
| ops.numberer('RCM') # Renumber the nodes using Reverse Cuthill-McKee (RCM) | |
| ops.system('BandGeneral') # Define the solution algorithm | |
| ops.test('NormDispIncr', 1.0e-6, 6, 2) # Convergence test criteria | |
| ops.algorithm('Linear') # Use linear algorithm for solving | |
| ops.integrator('LoadControl', 1) # Control load increments | |
| ops.analysis('Static') # Define a static analysis | |
| ops.analyze(1) # Perform the analysis | |
| # Print the model data | |
| ops.printModel() | |
| # Plot the model after defining elements | |
| opsv.plot_model() | |
| plt.title('plot_model after defining elements') | |
| # Plot the applied loads on the model in 2D | |
| opsv.plot_loads_2d(nep=10, # Number of points along each element | |
| sfac=1, # Scale factor for loads | |
| fig_wi_he=(10, 5), # Width and height of the figure | |
| fig_lbrt=(0.1, 0.1, 0.9, 0.9), # Left, bottom, right, top margins | |
| fmt_model_loads={'color': 'red', 'linewidth': 1.5}, # Formatting for load arrows | |
| node_supports=True, # Display node supports | |
| truss_node_offset=0.05, # Offset for truss elements | |
| ax=None) # Matplotlib axis, None to use current axis | |
| # Plot deformations (scaled) after analysis | |
| opsv.plot_defo() | |
| # Plot internal force diagrams: N (axial), V (shear), M (moment) | |
| sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5 # Scale factors for internal force diagrams | |
| # Plot axial force distribution | |
| opsv.section_force_diagram_2d('N', sfacN) | |
| plt.title('Axial force distribution') | |
| # Plot shear force distribution | |
| opsv.section_force_diagram_2d('T', sfacV) | |
| plt.title('Shear force distribution') | |
| # Plot bending moment distribution | |
| opsv.section_force_diagram_2d('M', sfacM) | |
| plt.title('Bending moment distribution') | |
| # Show all plots | |
| plt.show() | |
| # Exit the program | |
| exit() |