File size: 4,946 Bytes
be06037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Parameters configuration
import openseespy.opensees as ops  # Import OpenSeesPy for structural analysis
import opsvis as opsv  # Import opsvis for visualization
import matplotlib.pyplot as plt  # Import Matplotlib for plotting
ops.wipe()  # Clear any existing model
ops.model('basic', '-ndm', 2, '-ndf', 3)  # Define a 2D model with 3 degrees of freedom per node (DOF)

# Column and brace lengths
colL, girL = 4.0, 6.0
# Section properties: cross-sectional area (A) and moment of inertia (Iz)
Acol, Abrace, Agir = 2.0e-3, 6.0e-3, 6.0e-3
IzCol, IzBrace, IzGir = 1.6e-5, 5.4e-5, 5.4e-5
# Young's modulus (E)
E = 200.0e9
# External horizontal load
P = 2.0e3
# Define the material property dictionary for columns and girders
Ep = {
    1: [E, Acol, IzCol],  # Element 1 is a column on the left
    2: [E, Acol, IzCol],  # Element 2 is a column on the right
    3: [E, Agir, IzGir],  # Element 3 is a girder
    4: [E, Agir, IzGir],  # Element 4 is a diagonal member on the left
    5: [E, Agir, IzGir]   # Element 5 is a diagonal member on the right
}

# Define the node coordinates
ops.node(1, 0, 0)          # Node 1 at (0, 0) - Left bottom support
ops.node(2, 6.0, 0)        # Node 2 at (6.0, 0) - Right bottom support
ops.node(3, 0, 4.0)        # Node 3 at (0, 4.0) - Left top
ops.node(4, 6.0, 4.0)      # Node 4 at (6.0, 4.0) - Right top
ops.node(5, -4.0, 0)       # Node 5 at (-4.0, 0) - Left diagonal support
ops.node(6, 10.0, 0)       # Node 6 at (10.0, 0) - Right diagonal support

# Define boundary conditions (supports)
ops.fix(1, 1, 1, 1)  # Fix all 3 DOFs (x, y, rotation) for node 1
ops.fix(2, 1, 1, 1)  # Fix all 3 DOFs (x, y, rotation) for node 2
ops.fix(5, 1, 1, 1)  # Fix all 3 DOFs (x, y, rotation) for node 5
ops.fix(6, 1, 1, 1)  # Fix all 3 DOFs (x, y, rotation) for node 6

# Plot the model before defining elements
opsv.plot_model()
# Add title
plt.title('plot_model before defining elements')

# Define transformation type for elements (Linear)
ops.geomTransf('Linear', 1)

# Define column and girder elements (elastic beam-column elements)
ops.element('elasticBeamColumn', 1, 1, 3, Acol, E, IzCol, 1)  # Column element 1: Node 1 to Node 3
ops.element('elasticBeamColumn', 2, 2, 4, Acol, E, IzCol, 1)  # Column element 2: Node 2 to Node 4
ops.element('elasticBeamColumn', 3, 3, 4, Agir, E, IzGir, 1)  # Girder element 3: Node 3 to Node 4
ops.element('elasticBeamColumn', 4, 3, 5, Agir, E, IzGir, 1)  # Diagonal element 4: Node 3 to Node 5
ops.element('elasticBeamColumn', 5, 4, 6, Agir, E, IzGir, 1)  # Diagonal element 5: Node 4 to Node 6

# Define external loads
Px = 2e3     # Point load in x-direction

# Create a dictionary to store element loads
Ew = {}

# Define time series for constant loads
ops.timeSeries('Constant', 1)
# Define load pattern using the constant time series
ops.pattern('Plain', 1, 1)

# Applying point loads
ops.load(3, Px, 0.0, 0.0)  # Apply Px at node 3 in the x-direction

# Applying distributed loads
for etag in Ew:
    ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2])
# Analysis settings
ops.constraints('Transformation')  # Apply transformation constraints
ops.numberer('RCM')  # Renumber the nodes using Reverse Cuthill-McKee (RCM)
ops.system('BandGeneral')  # Define the solution algorithm
ops.test('NormDispIncr', 1.0e-6, 6, 2)  # Convergence test criteria
ops.algorithm('Linear')  # Use linear algorithm for solving
ops.integrator('LoadControl', 1)  # Control load increments
ops.analysis('Static')  # Define a static analysis
ops.analyze(1)  # Perform the analysis

# Print the model data
ops.printModel()

# Plot the model after defining elements
opsv.plot_model()
plt.title('plot_model after defining elements')

# Plot the applied loads on the model in 2D
opsv.plot_loads_2d(nep=10,  # Number of points along each element
                   sfac=1,  # Scale factor for loads
                   fig_wi_he=(10, 5),  # Width and height of the figure
                   fig_lbrt=(0.1, 0.1, 0.9, 0.9),  # Left, bottom, right, top margins
                   fmt_model_loads={'color': 'red', 'linewidth': 1.5},  # Formatting for load arrows
                   node_supports=True,  # Display node supports
                   truss_node_offset=0.05,  # Offset for truss elements
                   ax=None)  # Matplotlib axis, None to use current axis

# Plot deformations (scaled) after analysis
opsv.plot_defo()

# Plot internal force diagrams: N (axial), V (shear), M (moment)
sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5  # Scale factors for internal force diagrams
# Plot axial force distribution
opsv.section_force_diagram_2d('N', sfacN)
plt.title('Axial force distribution')

# Plot shear force distribution
opsv.section_force_diagram_2d('T', sfacV)
plt.title('Shear force distribution')

# Plot bending moment distribution
opsv.section_force_diagram_2d('M', sfacM)
plt.title('Bending moment distribution')

# Show all plots
plt.show()

# Exit the program
exit()