# Parameters configuration import openseespy.opensees as ops # Import OpenSeesPy for structural analysis import opsvis as opsv # Import opsvis for visualization import matplotlib.pyplot as plt # Import Matplotlib for plotting ops.wipe() # Clear any existing model ops.model('basic', '-ndm', 2, '-ndf', 3) # Define a 2D model with 3 degrees of freedom per node (DOF) # Column and brace lengths colL, girL = 4.0, 6.0 # Section properties: cross-sectional area (A) and moment of inertia (Iz) Acol, Abrace, Agir = 2.0e-3, 6.0e-3, 6.0e-3 IzCol, IzBrace, IzGir = 1.6e-5, 5.4e-5, 5.4e-5 # Young's modulus (E) E = 200.0e9 # External horizontal load P = 2.0e3 # Define the material property dictionary for columns and girders Ep = { 1: [E, Acol, IzCol], # Element 1 is a column on the left 2: [E, Acol, IzCol], # Element 2 is a column on the right 3: [E, Agir, IzGir], # Element 3 is a girder 4: [E, Agir, IzGir], # Element 4 is a diagonal member on the left 5: [E, Agir, IzGir] # Element 5 is a diagonal member on the right } # Define the node coordinates ops.node(1, 0, 0) # Node 1 at (0, 0) - Left bottom support ops.node(2, 6.0, 0) # Node 2 at (6.0, 0) - Right bottom support ops.node(3, 0, 4.0) # Node 3 at (0, 4.0) - Left top ops.node(4, 6.0, 4.0) # Node 4 at (6.0, 4.0) - Right top ops.node(5, -4.0, 0) # Node 5 at (-4.0, 0) - Left diagonal support ops.node(6, 10.0, 0) # Node 6 at (10.0, 0) - Right diagonal support # Define boundary conditions (supports) ops.fix(1, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 1 ops.fix(2, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 2 ops.fix(5, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 5 ops.fix(6, 1, 1, 1) # Fix all 3 DOFs (x, y, rotation) for node 6 # Plot the model before defining elements opsv.plot_model() # Add title plt.title('plot_model before defining elements') # Define transformation type for elements (Linear) ops.geomTransf('Linear', 1) # Define column and girder elements (elastic beam-column elements) ops.element('elasticBeamColumn', 1, 1, 3, Acol, E, IzCol, 1) # Column element 1: Node 1 to Node 3 ops.element('elasticBeamColumn', 2, 2, 4, Acol, E, IzCol, 1) # Column element 2: Node 2 to Node 4 ops.element('elasticBeamColumn', 3, 3, 4, Agir, E, IzGir, 1) # Girder element 3: Node 3 to Node 4 ops.element('elasticBeamColumn', 4, 3, 5, Agir, E, IzGir, 1) # Diagonal element 4: Node 3 to Node 5 ops.element('elasticBeamColumn', 5, 4, 6, Agir, E, IzGir, 1) # Diagonal element 5: Node 4 to Node 6 # Define external loads Px = 2e3 # Point load in x-direction # Create a dictionary to store element loads Ew = {} # Define time series for constant loads ops.timeSeries('Constant', 1) # Define load pattern using the constant time series ops.pattern('Plain', 1, 1) # Applying point loads ops.load(3, Px, 0.0, 0.0) # Apply Px at node 3 in the x-direction # Applying distributed loads for etag in Ew: ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2]) # Analysis settings ops.constraints('Transformation') # Apply transformation constraints ops.numberer('RCM') # Renumber the nodes using Reverse Cuthill-McKee (RCM) ops.system('BandGeneral') # Define the solution algorithm ops.test('NormDispIncr', 1.0e-6, 6, 2) # Convergence test criteria ops.algorithm('Linear') # Use linear algorithm for solving ops.integrator('LoadControl', 1) # Control load increments ops.analysis('Static') # Define a static analysis ops.analyze(1) # Perform the analysis # Print the model data ops.printModel() # Plot the model after defining elements opsv.plot_model() plt.title('plot_model after defining elements') # Plot the applied loads on the model in 2D opsv.plot_loads_2d(nep=10, # Number of points along each element sfac=1, # Scale factor for loads fig_wi_he=(10, 5), # Width and height of the figure fig_lbrt=(0.1, 0.1, 0.9, 0.9), # Left, bottom, right, top margins fmt_model_loads={'color': 'red', 'linewidth': 1.5}, # Formatting for load arrows node_supports=True, # Display node supports truss_node_offset=0.05, # Offset for truss elements ax=None) # Matplotlib axis, None to use current axis # Plot deformations (scaled) after analysis opsv.plot_defo() # Plot internal force diagrams: N (axial), V (shear), M (moment) sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5 # Scale factors for internal force diagrams # Plot axial force distribution opsv.section_force_diagram_2d('N', sfacN) plt.title('Axial force distribution') # Plot shear force distribution opsv.section_force_diagram_2d('T', sfacV) plt.title('Shear force distribution') # Plot bending moment distribution opsv.section_force_diagram_2d('M', sfacM) plt.title('Bending moment distribution') # Show all plots plt.show() # Exit the program exit()