AnglE-optimized Text Embeddings
Paper
•
2309.12871
•
Published
•
3
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'basic choker',
'unisex sweatshirt',
'unisex sweatshirt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 15warmup_ratio: 0.1fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | loss |
|---|---|---|---|
| 0.1721 | 100 | 10.8697 | - |
| 0.3442 | 200 | 9.1125 | - |
| 0.5164 | 300 | 6.8873 | - |
| 0.6885 | 400 | 3.1124 | - |
| 0.8606 | 500 | 1.0882 | - |
| 1.0327 | 600 | 0.869 | - |
| 1.2048 | 700 | 0.6952 | - |
| 1.3769 | 800 | 0.5522 | - |
| 1.5491 | 900 | 0.5184 | - |
| 1.7212 | 1000 | 0.3996 | - |
| 1.8933 | 1100 | 0.6316 | - |
| 2.0654 | 1200 | 0.5352 | - |
| 2.2375 | 1300 | 0.3731 | - |
| 2.4096 | 1400 | 0.3376 | - |
| 2.5818 | 1500 | 0.597 | - |
| 2.7539 | 1600 | 0.5737 | - |
| 2.9260 | 1700 | 0.7107 | - |
| 3.0981 | 1800 | 0.4356 | - |
| 3.2702 | 1900 | 0.5581 | - |
| 3.4423 | 2000 | 0.2012 | - |
| 3.6145 | 2100 | 0.3906 | - |
| 3.7866 | 2200 | 0.5386 | - |
| 3.9587 | 2300 | 0.2624 | - |
| 4.1308 | 2400 | 0.3573 | - |
| 4.3029 | 2500 | 0.4798 | - |
| 4.4750 | 2600 | 0.2465 | - |
| 4.6472 | 2700 | 0.3482 | - |
| 4.8193 | 2800 | 0.1915 | - |
| 4.9914 | 2900 | 0.4617 | - |
| 5.1635 | 3000 | 0.2874 | - |
| 5.3356 | 3100 | 0.4636 | - |
| 5.5077 | 3200 | 0.1344 | - |
| 5.6799 | 3300 | 0.3615 | - |
| 5.8520 | 3400 | 0.309 | - |
| 6.0241 | 3500 | 0.1883 | - |
| 6.1962 | 3600 | 0.4029 | - |
| 6.3683 | 3700 | 0.2082 | - |
| 6.5404 | 3800 | 0.1333 | - |
| 6.7126 | 3900 | 0.1509 | - |
| 6.8847 | 4000 | 0.6264 | - |
| 7.0568 | 4100 | 0.2177 | - |
| 7.2289 | 4200 | 0.1957 | - |
| 7.4010 | 4300 | 0.2887 | - |
| 7.5731 | 4400 | 0.2271 | - |
| 7.7453 | 4500 | 0.3486 | - |
| 7.9174 | 4600 | 0.4429 | - |
| 8.0895 | 4700 | 0.4398 | - |
| 8.2616 | 4800 | 0.31 | - |
| 8.4337 | 4900 | 0.2045 | - |
| 8.6059 | 5000 | 0.2583 | 0.2371 |
| 8.7780 | 5100 | 0.2774 | - |
| 8.9501 | 5200 | 0.1902 | - |
| 9.1222 | 5300 | 0.3058 | - |
| 9.2943 | 5400 | 0.3742 | - |
| 9.4664 | 5500 | 0.2972 | - |
| 9.6386 | 5600 | 0.3084 | - |
| 9.8107 | 5700 | 0.1215 | - |
| 9.9828 | 5800 | 0.1876 | - |
| 10.1549 | 5900 | 0.1702 | - |
| 10.3270 | 6000 | 0.2506 | - |
| 10.4991 | 6100 | 0.2852 | - |
| 10.6713 | 6200 | 0.2354 | - |
| 10.8434 | 6300 | 0.214 | - |
| 11.0155 | 6400 | 0.3815 | - |
| 11.1876 | 6500 | 0.0803 | - |
| 11.3597 | 6600 | 0.1941 | - |
| 11.5318 | 6700 | 0.1576 | - |
| 11.7040 | 6800 | 0.2911 | - |
| 11.8761 | 6900 | 0.4913 | - |
| 12.0482 | 7000 | 0.2759 | - |
| 12.2203 | 7100 | 0.2928 | - |
| 12.3924 | 7200 | 0.2181 | - |
| 12.5645 | 7300 | 0.1286 | - |
| 12.7367 | 7400 | 0.3342 | - |
| 12.9088 | 7500 | 0.1577 | - |
| 13.0809 | 7600 | 0.2578 | - |
| 13.2530 | 7700 | 0.2844 | - |
| 13.4251 | 7800 | 0.0917 | - |
| 13.5972 | 7900 | 0.2617 | - |
| 13.7694 | 8000 | 0.3021 | - |
| 13.9415 | 8100 | 0.1036 | - |
| 14.1136 | 8200 | 0.5471 | - |
| 14.2857 | 8300 | 0.2395 | - |
| 14.4578 | 8400 | 0.2664 | - |
| 14.6299 | 8500 | 0.2697 | - |
| 14.8021 | 8600 | 0.1569 | - |
| 14.9742 | 8700 | 0.116 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2