AnglE-optimized Text Embeddings
Paper
•
2309.12871
•
Published
•
3
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'siamy wrap',
'siamy',
'hair revival',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0070 | 100 | 19.5113 |
| 0.0140 | 200 | 19.2906 |
| 0.0210 | 300 | 19.6854 |
| 0.0280 | 400 | 18.3384 |
| 0.0350 | 500 | 19.5149 |
| 0.0420 | 600 | 18.8415 |
| 0.0489 | 700 | 18.8726 |
| 0.0559 | 800 | 19.4663 |
| 0.0629 | 900 | 19.9079 |
| 0.0699 | 1000 | 18.8692 |
| 0.0769 | 1100 | 18.1987 |
| 0.0839 | 1200 | 17.8522 |
| 0.0909 | 1300 | 18.8869 |
| 0.0979 | 1400 | 18.5664 |
| 0.1049 | 1500 | 17.1952 |
| 0.1119 | 1600 | 18.9827 |
| 0.1189 | 1700 | 16.5597 |
| 0.1259 | 1800 | 16.4406 |
| 0.1328 | 1900 | 16.1171 |
| 0.1398 | 2000 | 16.2726 |
| 0.1468 | 2100 | 18.8375 |
| 0.1538 | 2200 | 17.7006 |
| 0.1608 | 2300 | 15.7486 |
| 0.1678 | 2400 | 17.8749 |
| 0.1748 | 2500 | 18.0333 |
| 0.1818 | 2600 | 15.5849 |
| 0.1888 | 2700 | 14.0833 |
| 0.1958 | 2800 | 12.0631 |
| 0.2028 | 2900 | 12.7098 |
| 0.2098 | 3000 | 11.1801 |
| 0.2168 | 3100 | 11.2842 |
| 0.2237 | 3200 | 13.884 |
| 0.2307 | 3300 | 14.7762 |
| 0.2377 | 3400 | 12.5363 |
| 0.2447 | 3500 | 11.2903 |
| 0.2517 | 3600 | 10.1627 |
| 0.2587 | 3700 | 11.1758 |
| 0.2657 | 3800 | 15.2709 |
| 0.2727 | 3900 | 12.5853 |
| 0.2797 | 4000 | 11.8216 |
| 0.2867 | 4100 | 11.4522 |
| 0.2937 | 4200 | 12.4326 |
| 0.3007 | 4300 | 12.6818 |
| 0.3076 | 4400 | 11.9052 |
| 0.3146 | 4500 | 12.0142 |
| 0.3216 | 4600 | 10.9577 |
| 0.3286 | 4700 | 11.4502 |
| 0.3356 | 4800 | 10.6586 |
| 0.3426 | 4900 | 11.4709 |
| 0.3496 | 5000 | 10.6245 |
| 0.3566 | 5100 | 10.305 |
| 0.3636 | 5200 | 10.3784 |
| 0.3706 | 5300 | 10.4824 |
| 0.3776 | 5400 | 9.861 |
| 0.3846 | 5500 | 10.9763 |
| 0.3916 | 5600 | 11.2106 |
| 0.3985 | 5700 | 13.8056 |
| 0.4055 | 5800 | 9.576 |
| 0.4125 | 5900 | 11.1156 |
| 0.4195 | 6000 | 11.8297 |
| 0.4265 | 6100 | 12.3616 |
| 0.4335 | 6200 | 10.0882 |
| 0.4405 | 6300 | 11.9186 |
| 0.4475 | 6400 | 11.0648 |
| 0.4545 | 6500 | 11.6143 |
| 0.4615 | 6600 | 10.476 |
| 0.4685 | 6700 | 10.6218 |
| 0.4755 | 6800 | 9.9786 |
| 0.4825 | 6900 | 10.167 |
| 0.4894 | 7000 | 10.6891 |
| 0.4964 | 7100 | 10.9375 |
| 0.5034 | 7200 | 10.0685 |
| 0.5104 | 7300 | 9.6487 |
| 0.5174 | 7400 | 9.4383 |
| 0.5244 | 7500 | 9.6336 |
| 0.5314 | 7600 | 10.4266 |
| 0.5384 | 7700 | 9.9414 |
| 0.5454 | 7800 | 9.426 |
| 0.5524 | 7900 | 9.834 |
| 0.5594 | 8000 | 9.8532 |
| 0.5664 | 8100 | 9.8928 |
| 0.5733 | 8200 | 9.5169 |
| 0.5803 | 8300 | 8.9786 |
| 0.5873 | 8400 | 9.0787 |
| 0.5943 | 8500 | 10.8244 |
| 0.6013 | 8600 | 9.581 |
| 0.6083 | 8700 | 9.7036 |
| 0.6153 | 8800 | 9.5971 |
| 0.6223 | 8900 | 9.547 |
| 0.6293 | 9000 | 9.0646 |
| 0.6363 | 9100 | 9.7762 |
| 0.6433 | 9200 | 9.1339 |
| 0.6503 | 9300 | 9.7895 |
| 0.6573 | 9400 | 9.657 |
| 0.6642 | 9500 | 8.4635 |
| 0.6712 | 9600 | 8.7074 |
| 0.6782 | 9700 | 8.6945 |
| 0.6852 | 9800 | 8.6175 |
| 0.6922 | 9900 | 8.2402 |
| 0.6992 | 10000 | 8.5626 |
| 0.7062 | 10100 | 8.3656 |
| 0.7132 | 10200 | 8.2415 |
| 0.7202 | 10300 | 8.0921 |
| 0.7272 | 10400 | 8.0562 |
| 0.7342 | 10500 | 8.2938 |
| 0.7412 | 10600 | 8.2436 |
| 0.7481 | 10700 | 8.5627 |
| 0.7551 | 10800 | 8.5165 |
| 0.7621 | 10900 | 8.6958 |
| 0.7691 | 11000 | 8.8117 |
| 0.7761 | 11100 | 9.1216 |
| 0.7831 | 11200 | 8.6971 |
| 0.7901 | 11300 | 9.3277 |
| 0.7971 | 11400 | 9.0345 |
| 0.8041 | 11500 | 8.4163 |
| 0.8111 | 11600 | 8.4963 |
| 0.8181 | 11700 | 8.2664 |
| 0.8251 | 11800 | 8.0255 |
| 0.8321 | 11900 | 8.4224 |
| 0.8390 | 12000 | 8.3533 |
| 0.8460 | 12100 | 8.0905 |
| 0.8530 | 12200 | 8.4241 |
| 0.8600 | 12300 | 8.3633 |
| 0.8670 | 12400 | 8.1362 |
| 0.8740 | 12500 | 8.4497 |
| 0.8810 | 12600 | 9.6622 |
| 0.8880 | 12700 | 8.4067 |
| 0.8950 | 12800 | 8.7043 |
| 0.9020 | 12900 | 8.5058 |
| 0.9090 | 13000 | 8.7286 |
| 0.9160 | 13100 | 8.3701 |
| 0.9229 | 13200 | 8.9587 |
| 0.9299 | 13300 | 8.3708 |
| 0.9369 | 13400 | 8.3968 |
| 0.9439 | 13500 | 8.6876 |
| 0.9509 | 13600 | 8.2832 |
| 0.9579 | 13700 | 8.4099 |
| 0.9649 | 13800 | 8.8301 |
| 0.9719 | 13900 | 8.6023 |
| 0.9789 | 14000 | 8.2473 |
| 0.9859 | 14100 | 8.8743 |
| 0.9929 | 14200 | 8.5779 |
| 0.9999 | 14300 | 8.3366 |
| 1.0069 | 14400 | 8.5381 |
| 1.0138 | 14500 | 8.2321 |
| 1.0208 | 14600 | 8.3483 |
| 1.0278 | 14700 | 8.0159 |
| 1.0348 | 14800 | 8.3423 |
| 1.0418 | 14900 | 8.5768 |
| 1.0488 | 15000 | 8.2451 |
| 1.0558 | 15100 | 8.5089 |
| 1.0628 | 15200 | 8.1973 |
| 1.0698 | 15300 | 7.9692 |
| 1.0768 | 15400 | 7.9994 |
| 1.0838 | 15500 | 7.8867 |
| 1.0908 | 15600 | 8.0215 |
| 1.0977 | 15700 | 8.0387 |
| 1.1047 | 15800 | 8.2535 |
| 1.1117 | 15900 | 8.221 |
| 1.1187 | 16000 | 8.228 |
| 1.1257 | 16100 | 8.2775 |
| 1.1327 | 16200 | 8.1873 |
| 1.1397 | 16300 | 8.2097 |
| 1.1467 | 16400 | 8.3559 |
| 1.1537 | 16500 | 8.1405 |
| 1.1607 | 16600 | 8.0454 |
| 1.1677 | 16700 | 8.4419 |
| 1.1747 | 16800 | 8.0014 |
| 1.1817 | 16900 | 8.2765 |
| 1.1886 | 17000 | 8.3162 |
| 1.1956 | 17100 | 8.5472 |
| 1.2026 | 17200 | 8.0504 |
| 1.2096 | 17300 | 7.9872 |
| 1.2166 | 17400 | 8.4175 |
| 1.2236 | 17500 | 8.4016 |
| 1.2306 | 17600 | 7.9588 |
| 1.2376 | 17700 | 8.3694 |
| 1.2446 | 17800 | 8.4478 |
| 1.2516 | 17900 | 8.365 |
| 1.2586 | 18000 | 8.6435 |
| 1.2656 | 18100 | 8.2626 |
| 1.2725 | 18200 | 8.1302 |
| 1.2795 | 18300 | 8.2361 |
| 1.2865 | 18400 | 8.2836 |
| 1.2935 | 18500 | 8.0584 |
| 1.3005 | 18600 | 8.0183 |
| 1.3075 | 18700 | 8.3594 |
| 1.3145 | 18800 | 8.3301 |
| 1.3215 | 18900 | 8.2401 |
| 1.3285 | 19000 | 8.1612 |
| 1.3355 | 19100 | 8.2225 |
| 1.3425 | 19200 | 8.2603 |
| 1.3495 | 19300 | 8.1074 |
| 1.3565 | 19400 | 8.3617 |
| 1.3634 | 19500 | 8.3055 |
| 1.3704 | 19600 | 8.329 |
| 1.3774 | 19700 | 8.2428 |
| 1.3844 | 19800 | 8.1095 |
| 1.3914 | 19900 | 8.2461 |
| 1.3984 | 20000 | 8.4066 |
| 1.4054 | 20100 | 8.1236 |
| 1.4124 | 20200 | 7.9104 |
| 1.4194 | 20300 | 7.9155 |
| 1.4264 | 20400 | 8.29 |
| 1.4334 | 20500 | 7.9682 |
| 1.4404 | 20600 | 8.1022 |
| 1.4474 | 20700 | 8.2172 |
| 1.4543 | 20800 | 7.8424 |
| 1.4613 | 20900 | 8.0254 |
| 1.4683 | 21000 | 7.8858 |
| 1.4753 | 21100 | 8.408 |
| 1.4823 | 21200 | 8.0559 |
| 1.4893 | 21300 | 8.0546 |
| 1.4963 | 21400 | 8.0694 |
| 1.5033 | 21500 | 8.1242 |
| 1.5103 | 21600 | 7.8775 |
| 1.5173 | 21700 | 8.394 |
| 1.5243 | 21800 | 8.5866 |
| 1.5313 | 21900 | 8.0003 |
| 1.5382 | 22000 | 7.9813 |
| 1.5452 | 22100 | 8.647 |
| 1.5522 | 22200 | 8.3267 |
| 1.5592 | 22300 | 7.9852 |
| 1.5662 | 22400 | 7.9187 |
| 1.5732 | 22500 | 8.2411 |
| 1.5802 | 22600 | 7.9273 |
| 1.5872 | 22700 | 8.0118 |
| 1.5942 | 22800 | 8.1991 |
| 1.6012 | 22900 | 7.9057 |
| 1.6082 | 23000 | 7.9906 |
| 1.6152 | 23100 | 8.4478 |
| 1.6222 | 23200 | 8.3375 |
| 1.6291 | 23300 | 8.5993 |
| 1.6361 | 23400 | 8.3598 |
| 1.6431 | 23500 | 8.0209 |
| 1.6501 | 23600 | 8.0557 |
| 1.6571 | 23700 | 7.8847 |
| 1.6641 | 23800 | 8.3735 |
| 1.6711 | 23900 | 8.4304 |
| 1.6781 | 24000 | 8.2099 |
| 1.6851 | 24100 | 8.2169 |
| 1.6921 | 24200 | 7.9044 |
| 1.6991 | 24300 | 8.1726 |
| 1.7061 | 24400 | 7.9407 |
| 1.7130 | 24500 | 8.3139 |
| 1.7200 | 24600 | 8.3866 |
| 1.7270 | 24700 | 7.9412 |
| 1.7340 | 24800 | 8.1111 |
| 1.7410 | 24900 | 8.4809 |
| 1.7480 | 25000 | 8.3234 |
| 1.7550 | 25100 | 8.0375 |
| 1.7620 | 25200 | 8.1444 |
| 1.7690 | 25300 | 7.9816 |
| 1.7760 | 25400 | 7.8436 |
| 1.7830 | 25500 | 8.2581 |
| 1.7900 | 25600 | 8.2902 |
| 1.7970 | 25700 | 8.0568 |
| 1.8039 | 25800 | 7.9311 |
| 1.8109 | 25900 | 8.0597 |
| 1.8179 | 26000 | 8.2886 |
| 1.8249 | 26100 | 8.2747 |
| 1.8319 | 26200 | 8.2165 |
| 1.8389 | 26300 | 8.3178 |
| 1.8459 | 26400 | 7.8966 |
| 1.8529 | 26500 | 8.0541 |
| 1.8599 | 26600 | 8.0102 |
| 1.8669 | 26700 | 8.2523 |
| 1.8739 | 26800 | 8.1137 |
| 1.8809 | 26900 | 8.2051 |
| 1.8878 | 27000 | 8.1109 |
| 1.8948 | 27100 | 7.9318 |
| 1.9018 | 27200 | 7.7605 |
| 1.9088 | 27300 | 8.2395 |
| 1.9158 | 27400 | 8.0824 |
| 1.9228 | 27500 | 8.1089 |
| 1.9298 | 27600 | 8.1654 |
| 1.9368 | 27700 | 8.0581 |
| 1.9438 | 27800 | 8.3029 |
| 1.9508 | 27900 | 8.0532 |
| 1.9578 | 28000 | 7.8507 |
| 1.9648 | 28100 | 7.9491 |
| 1.9718 | 28200 | 8.489 |
| 1.9787 | 28300 | 8.58 |
| 1.9857 | 28400 | 8.2852 |
| 1.9927 | 28500 | 7.9896 |
| 1.9997 | 28600 | 7.9989 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}