Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from typing import List, Optional
|
| 4 |
-
from
|
| 5 |
import os
|
| 6 |
import uuid
|
| 7 |
import time
|
|
@@ -56,15 +56,16 @@ app = FastAPI(
|
|
| 56 |
OpenAI-compatible API powered by Qwen2.5-Coder-7B for code generation and assistance.
|
| 57 |
|
| 58 |
### Features
|
| 59 |
-
* 🤖 AI-powered code generation with Qwen2.5-Coder
|
| 60 |
* 🔌 OpenAI-compatible endpoints for Cursor IDE integration
|
| 61 |
* 💰 ETH unit conversion utilities (Wei ↔ Gwei ↔ ETH)
|
| 62 |
* 💻 Optimized for coding tasks and assistance
|
|
|
|
| 63 |
|
| 64 |
### Integration with Cursor IDE
|
| 65 |
1. Go to Cursor Settings → Models → Override OpenAI Base URL
|
| 66 |
2. Set Base URL: `https://jeeltcraft-luminous.hf.space/v1`
|
| 67 |
-
3. Model name: `qwen2.5-coder-7b`
|
| 68 |
4. Add any dummy API key
|
| 69 |
""",
|
| 70 |
version="1.0.0",
|
|
@@ -105,47 +106,62 @@ _llm_model = None
|
|
| 105 |
|
| 106 |
def get_llm():
|
| 107 |
"""
|
| 108 |
-
Lazy load the model
|
| 109 |
Model files are preloaded by Hugging Face Spaces during build time.
|
| 110 |
"""
|
| 111 |
global _llm_model
|
| 112 |
|
| 113 |
if _llm_model is None:
|
| 114 |
try:
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
model_file = "Qwen2.5-Coder-7B-Instruct.IQ4_XS.gguf"
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
max_new_tokens=512,
|
| 126 |
)
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
except Exception as e:
|
| 129 |
print(f"✗ Error loading model: {e}")
|
| 130 |
raise
|
| 131 |
|
| 132 |
return _llm_model
|
| 133 |
|
| 134 |
-
def call_llm(prompt: str) -> str:
|
| 135 |
"""
|
| 136 |
-
Generate response using the preloaded
|
| 137 |
"""
|
| 138 |
try:
|
| 139 |
llm = get_llm()
|
|
|
|
| 140 |
response = llm(
|
| 141 |
prompt,
|
| 142 |
-
|
| 143 |
-
temperature=
|
| 144 |
top_p=0.95,
|
| 145 |
-
|
| 146 |
-
stop=["</s>", "<|user|>", "<|im_end|>"]
|
|
|
|
| 147 |
)
|
| 148 |
-
|
|
|
|
|
|
|
| 149 |
except Exception as e:
|
| 150 |
return f"Error during inference: {str(e)}"
|
| 151 |
|
|
@@ -193,6 +209,21 @@ def convert_eth_units(value: float, from_unit: str = "eth") -> dict:
|
|
| 193 |
}
|
| 194 |
}
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
# ============== OpenAI-Compatible Endpoints ==============
|
| 197 |
|
| 198 |
@app.post(
|
|
@@ -211,7 +242,7 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
| 211 |
the model's response.
|
| 212 |
|
| 213 |
## Parameters
|
| 214 |
-
- **model**: Model identifier (use `qwen2.5-coder-7b` for this API)
|
| 215 |
- **messages**: Array of conversation messages with role and content
|
| 216 |
- Role can be: `system`, `user`, or `assistant`
|
| 217 |
- **temperature**: Controls randomness (0.0 = deterministic, 2.0 = very random)
|
|
@@ -242,11 +273,21 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
| 242 |
""
|
| 243 |
)
|
| 244 |
|
| 245 |
-
#
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
# Call
|
| 249 |
-
response_text = call_llm(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
# Simple token counting (word-based estimation)
|
| 252 |
prompt_tokens = len(user_message.split())
|
|
@@ -293,6 +334,12 @@ async def list_models():
|
|
| 293 |
"object": "model",
|
| 294 |
"created": int(time.time()),
|
| 295 |
"owned_by": "jeeltcraft"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
}
|
| 297 |
]
|
| 298 |
}
|
|
@@ -363,110 +410,4 @@ async def convert_units(request: EthConversionRequest):
|
|
| 363 |
Conversions to Wei, Gwei, and ETH with both numeric and formatted values.
|
| 364 |
"""
|
| 365 |
try:
|
| 366 |
-
result = convert_eth_units(
|
| 367 |
-
return result
|
| 368 |
-
except ValueError as e:
|
| 369 |
-
raise HTTPException(status_code=400, detail=str(e))
|
| 370 |
-
except Exception as e:
|
| 371 |
-
raise HTTPException(status_code=500, detail=f"Conversion error: {str(e)}")
|
| 372 |
-
|
| 373 |
-
@app.post(
|
| 374 |
-
"/eth_to_units",
|
| 375 |
-
tags=["Utilities"],
|
| 376 |
-
summary="Quick convert: ETH to Wei/Gwei",
|
| 377 |
-
response_description="Returns Wei and Gwei values"
|
| 378 |
-
)
|
| 379 |
-
async def eth_to_units(item: Validation):
|
| 380 |
-
"""
|
| 381 |
-
Quick converter: Extract a number from text and convert from ETH to Wei and Gwei.
|
| 382 |
-
|
| 383 |
-
This endpoint extracts the first number found in the prompt and treats it as ETH,
|
| 384 |
-
then converts it to Wei and Gwei. Useful for quick conversions in chat interfaces.
|
| 385 |
-
|
| 386 |
-
## Example
|
| 387 |
-
Send prompt: `"Convert 0.5 ETH"` or just `"0.5"`
|
| 388 |
-
|
| 389 |
-
Returns the value in Wei and Gwei.
|
| 390 |
-
|
| 391 |
-
- **prompt**: Text containing an ETH amount (number will be extracted)
|
| 392 |
-
"""
|
| 393 |
-
try:
|
| 394 |
-
# Extract number from prompt
|
| 395 |
-
match = re.search(r'\d+\.?\d*', item.prompt)
|
| 396 |
-
if match:
|
| 397 |
-
eth_value = float(match.group())
|
| 398 |
-
result = convert_eth_units(eth_value, "eth")
|
| 399 |
-
return result
|
| 400 |
-
else:
|
| 401 |
-
raise HTTPException(status_code=400, detail="No numeric value found in prompt")
|
| 402 |
-
except ValueError as e:
|
| 403 |
-
raise HTTPException(status_code=400, detail=str(e))
|
| 404 |
-
except Exception as e:
|
| 405 |
-
raise HTTPException(status_code=500, detail=f"Conversion error: {str(e)}")
|
| 406 |
-
|
| 407 |
-
@app.get(
|
| 408 |
-
"/quick_convert/{value}/{unit}",
|
| 409 |
-
tags=["Utilities"],
|
| 410 |
-
summary="Quick URL-based ETH conversion",
|
| 411 |
-
response_description="Returns conversions to all units"
|
| 412 |
-
)
|
| 413 |
-
async def quick_convert(value: float, unit: str = "eth"):
|
| 414 |
-
"""
|
| 415 |
-
Quick conversion via URL path parameters.
|
| 416 |
-
|
| 417 |
-
## Usage Examples
|
| 418 |
-
- `/quick_convert/1/eth` - Convert 1 ETH to Wei and Gwei
|
| 419 |
-
- `/quick_convert/50/gwei` - Convert 50 Gwei to ETH and Wei
|
| 420 |
-
- `/quick_convert/1000000000/wei` - Convert 1,000,000,000 Wei to ETH and Gwei
|
| 421 |
-
|
| 422 |
-
## Parameters
|
| 423 |
-
- **value**: Numeric amount to convert
|
| 424 |
-
- **unit**: Source unit (`eth`, `gwei`, or `wei`)
|
| 425 |
-
"""
|
| 426 |
-
try:
|
| 427 |
-
result = convert_eth_units(value, unit)
|
| 428 |
-
return result
|
| 429 |
-
except ValueError as e:
|
| 430 |
-
raise HTTPException(status_code=400, detail=str(e))
|
| 431 |
-
except Exception as e:
|
| 432 |
-
raise HTTPException(status_code=500, detail=f"Conversion error: {str(e)}")
|
| 433 |
-
|
| 434 |
-
# ============== Health & Info Endpoints ==============
|
| 435 |
-
|
| 436 |
-
@app.get(
|
| 437 |
-
"/",
|
| 438 |
-
tags=["Utilities"],
|
| 439 |
-
summary="API root information",
|
| 440 |
-
response_description="Returns API status and information"
|
| 441 |
-
)
|
| 442 |
-
async def root():
|
| 443 |
-
"""
|
| 444 |
-
Get basic information about the API.
|
| 445 |
-
|
| 446 |
-
Returns the API name, status, and current model being used.
|
| 447 |
-
"""
|
| 448 |
-
return {
|
| 449 |
-
"message": "Luminous API - OpenAI Compatible Coding Assistant",
|
| 450 |
-
"status": "active",
|
| 451 |
-
"model": "Qwen2.5-Coder-7B-Instruct",
|
| 452 |
-
"docs": "/docs",
|
| 453 |
-
"openapi": "/openapi.json"
|
| 454 |
-
}
|
| 455 |
-
|
| 456 |
-
@app.get(
|
| 457 |
-
"/health",
|
| 458 |
-
tags=["Utilities"],
|
| 459 |
-
summary="Health check",
|
| 460 |
-
response_description="Returns health status and diagnostics"
|
| 461 |
-
)
|
| 462 |
-
async def health_check():
|
| 463 |
-
"""
|
| 464 |
-
Check the health status of the API.
|
| 465 |
-
|
| 466 |
-
Returns information about model loading status.
|
| 467 |
-
"""
|
| 468 |
-
return {
|
| 469 |
-
"status": "healthy",
|
| 470 |
-
"model_loaded": _llm_model is not None,
|
| 471 |
-
"api_version": "1.0.0"
|
| 472 |
-
}
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from typing import List, Optional
|
| 4 |
+
from llama_cpp import Llama
|
| 5 |
import os
|
| 6 |
import uuid
|
| 7 |
import time
|
|
|
|
| 56 |
OpenAI-compatible API powered by Qwen2.5-Coder-7B for code generation and assistance.
|
| 57 |
|
| 58 |
### Features
|
| 59 |
+
* 🤖 AI-powered code generation with Qwen2.5-Coder (GGUF quantized)
|
| 60 |
* 🔌 OpenAI-compatible endpoints for Cursor IDE integration
|
| 61 |
* 💰 ETH unit conversion utilities (Wei ↔ Gwei ↔ ETH)
|
| 62 |
* 💻 Optimized for coding tasks and assistance
|
| 63 |
+
* ⚡ Fast inference with llama.cpp
|
| 64 |
|
| 65 |
### Integration with Cursor IDE
|
| 66 |
1. Go to Cursor Settings → Models → Override OpenAI Base URL
|
| 67 |
2. Set Base URL: `https://jeeltcraft-luminous.hf.space/v1`
|
| 68 |
+
3. Model name: `qwen2.5-coder-7b` or `gpt-4`
|
| 69 |
4. Add any dummy API key
|
| 70 |
""",
|
| 71 |
version="1.0.0",
|
|
|
|
| 106 |
|
| 107 |
def get_llm():
|
| 108 |
"""
|
| 109 |
+
Lazy load the GGUF model using llama-cpp-python.
|
| 110 |
Model files are preloaded by Hugging Face Spaces during build time.
|
| 111 |
"""
|
| 112 |
global _llm_model
|
| 113 |
|
| 114 |
if _llm_model is None:
|
| 115 |
try:
|
| 116 |
+
# Model path after preload_from_hub
|
| 117 |
+
model_repo = "CISCai/Qwen2.5-Coder-7B-Instruct-SOTA-GGUF"
|
| 118 |
model_file = "Qwen2.5-Coder-7B-Instruct.IQ4_XS.gguf"
|
| 119 |
|
| 120 |
+
# Build full path
|
| 121 |
+
from huggingface_hub import hf_hub_download
|
| 122 |
+
model_path = hf_hub_download(
|
| 123 |
+
repo_id=model_repo,
|
| 124 |
+
filename=model_file,
|
| 125 |
+
cache_dir="/root/.cache/huggingface/hub"
|
|
|
|
| 126 |
)
|
| 127 |
+
|
| 128 |
+
print(f"📦 Loading model from: {model_path}")
|
| 129 |
+
|
| 130 |
+
_llm_model = Llama(
|
| 131 |
+
model_path=model_path,
|
| 132 |
+
n_ctx=2048, # Context window
|
| 133 |
+
n_threads=4, # CPU threads to use
|
| 134 |
+
n_gpu_layers=0, # 0 for CPU only
|
| 135 |
+
verbose=False, # Reduce logging
|
| 136 |
+
seed=42 # For reproducibility
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
print("✓ Model loaded successfully with llama.cpp")
|
| 140 |
except Exception as e:
|
| 141 |
print(f"✗ Error loading model: {e}")
|
| 142 |
raise
|
| 143 |
|
| 144 |
return _llm_model
|
| 145 |
|
| 146 |
+
def call_llm(prompt: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
| 147 |
"""
|
| 148 |
+
Generate response using the preloaded GGUF model via llama.cpp.
|
| 149 |
"""
|
| 150 |
try:
|
| 151 |
llm = get_llm()
|
| 152 |
+
|
| 153 |
response = llm(
|
| 154 |
prompt,
|
| 155 |
+
max_tokens=max_tokens,
|
| 156 |
+
temperature=temperature,
|
| 157 |
top_p=0.95,
|
| 158 |
+
repeat_penalty=1.1,
|
| 159 |
+
stop=["</s>", "<|user|>", "<|im_end|>", "<|im_start|>"],
|
| 160 |
+
echo=False # Don't include the prompt in output
|
| 161 |
)
|
| 162 |
+
|
| 163 |
+
# Extract text from llama.cpp response
|
| 164 |
+
return response['choices'][0]['text'].strip()
|
| 165 |
except Exception as e:
|
| 166 |
return f"Error during inference: {str(e)}"
|
| 167 |
|
|
|
|
| 209 |
}
|
| 210 |
}
|
| 211 |
|
| 212 |
+
# ============== Startup Event ==============
|
| 213 |
+
|
| 214 |
+
@app.on_event("startup")
|
| 215 |
+
async def startup_event():
|
| 216 |
+
"""
|
| 217 |
+
Pre-load the model during startup to avoid timeout on first request.
|
| 218 |
+
"""
|
| 219 |
+
print("🚀 Starting up Luminous API...")
|
| 220 |
+
try:
|
| 221 |
+
get_llm() # This will load the model
|
| 222 |
+
print("✅ Model loaded and ready!")
|
| 223 |
+
except Exception as e:
|
| 224 |
+
print(f"⚠️ Warning: Could not pre-load model: {e}")
|
| 225 |
+
print("Model will be loaded on first request.")
|
| 226 |
+
|
| 227 |
# ============== OpenAI-Compatible Endpoints ==============
|
| 228 |
|
| 229 |
@app.post(
|
|
|
|
| 242 |
the model's response.
|
| 243 |
|
| 244 |
## Parameters
|
| 245 |
+
- **model**: Model identifier (use `qwen2.5-coder-7b` or `gpt-4` for this API)
|
| 246 |
- **messages**: Array of conversation messages with role and content
|
| 247 |
- Role can be: `system`, `user`, or `assistant`
|
| 248 |
- **temperature**: Controls randomness (0.0 = deterministic, 2.0 = very random)
|
|
|
|
| 273 |
""
|
| 274 |
)
|
| 275 |
|
| 276 |
+
# Get system message if provided
|
| 277 |
+
system_message = next(
|
| 278 |
+
(msg.content for msg in request.messages if msg.role == "system"),
|
| 279 |
+
"You are a helpful coding assistant."
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# Format prompt for Qwen2.5-Coder using ChatML format
|
| 283 |
+
formatted_prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant\n"
|
| 284 |
|
| 285 |
+
# Call LLM
|
| 286 |
+
response_text = call_llm(
|
| 287 |
+
formatted_prompt,
|
| 288 |
+
max_tokens=request.max_tokens,
|
| 289 |
+
temperature=request.temperature
|
| 290 |
+
)
|
| 291 |
|
| 292 |
# Simple token counting (word-based estimation)
|
| 293 |
prompt_tokens = len(user_message.split())
|
|
|
|
| 334 |
"object": "model",
|
| 335 |
"created": int(time.time()),
|
| 336 |
"owned_by": "jeeltcraft"
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"id": "gpt-4", # Alias for better Cursor compatibility
|
| 340 |
+
"object": "model",
|
| 341 |
+
"created": int(time.time()),
|
| 342 |
+
"owned_by": "jeeltcraft"
|
| 343 |
}
|
| 344 |
]
|
| 345 |
}
|
|
|
|
| 410 |
Conversions to Wei, Gwei, and ETH with both numeric and formatted values.
|
| 411 |
"""
|
| 412 |
try:
|
| 413 |
+
result = convert_eth_units(req
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|