Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from typing import List, Optional
|
| 4 |
-
from web3 import Web3
|
| 5 |
from ctransformers import AutoModelForCausalLM
|
| 6 |
import os
|
| 7 |
import uuid
|
|
@@ -10,13 +9,13 @@ import re
|
|
| 10 |
|
| 11 |
# ============== Pydantic Models ==============
|
| 12 |
|
| 13 |
-
class TransferRequest(BaseModel):
|
| 14 |
-
recipient_address: str
|
| 15 |
-
execute_transfer: bool = False
|
| 16 |
-
|
| 17 |
class Validation(BaseModel):
|
| 18 |
prompt: str
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# OpenAI-compatible models
|
| 21 |
class Message(BaseModel):
|
| 22 |
role: str
|
|
@@ -54,16 +53,21 @@ app = FastAPI(
|
|
| 54 |
description="""
|
| 55 |
## Luminous Coding Assistant API
|
| 56 |
|
| 57 |
-
OpenAI-compatible API powered by Qwen2.5-Coder-7B for code generation and assistance
|
| 58 |
|
| 59 |
### Features
|
| 60 |
-
* 🤖 AI-powered code generation
|
| 61 |
-
*
|
| 62 |
-
*
|
| 63 |
-
*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
""",
|
| 65 |
-
version="1.
|
| 66 |
-
terms_of_service="https://huggingface.co/spaces/jeeltcraft/Luminous",
|
| 67 |
contact={
|
| 68 |
"name": "Jeeltcraft",
|
| 69 |
"url": "https://huggingface.co/jeeltcraft",
|
|
@@ -82,26 +86,18 @@ app = FastAPI(
|
|
| 82 |
},
|
| 83 |
{
|
| 84 |
"name": "Utilities",
|
| 85 |
-
"description": "
|
| 86 |
-
},
|
| 87 |
-
{
|
| 88 |
-
"name": "Web3",
|
| 89 |
-
"description": "Blockchain x402 operations on Base network",
|
| 90 |
},
|
| 91 |
],
|
| 92 |
swagger_ui_parameters={
|
| 93 |
"deepLinking": True,
|
| 94 |
"displayRequestDuration": True,
|
| 95 |
-
"docExpansion": "none",
|
| 96 |
-
"syntaxHighlight.theme": "monokai",
|
| 97 |
"defaultModelsExpandDepth": 2,
|
| 98 |
}
|
| 99 |
)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
# Global counter
|
| 103 |
-
counter = 0
|
| 104 |
-
|
| 105 |
# Global variable to hold the model
|
| 106 |
_llm_model = None
|
| 107 |
|
|
@@ -155,54 +151,89 @@ def call_llm(prompt: str) -> str:
|
|
| 155 |
|
| 156 |
# ============== Helper Functions ==============
|
| 157 |
|
| 158 |
-
def
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
}
|
| 191 |
-
|
| 192 |
-
signed_tx = account.sign_transaction(tx)
|
| 193 |
-
tx_hash = w3.eth.send_raw_transaction(signed_tx.rawTransaction)
|
| 194 |
-
|
| 195 |
-
return w3.to_hex(tx_hash)
|
| 196 |
-
|
| 197 |
-
except Exception as e:
|
| 198 |
-
raise HTTPException(status_code=500, detail=f"Transaction failed: {str(e)}")
|
| 199 |
|
| 200 |
# ============== OpenAI-Compatible Endpoints ==============
|
| 201 |
|
| 202 |
-
@app.post(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
async def chat_completions(request: ChatCompletionRequest):
|
| 204 |
"""
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
"""
|
| 207 |
try:
|
| 208 |
# Extract the last user message from conversation history
|
|
@@ -212,7 +243,6 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
| 212 |
)
|
| 213 |
|
| 214 |
# Format prompt for Qwen2.5-Coder
|
| 215 |
-
# Qwen uses a different format than Zephyr
|
| 216 |
formatted_prompt = f"<|im_start|>system\nYou are a helpful coding assistant.<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant\n"
|
| 217 |
|
| 218 |
# Call your LLM
|
|
@@ -242,10 +272,18 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
| 242 |
except Exception as e:
|
| 243 |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 244 |
|
| 245 |
-
@app.get(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
async def list_models():
|
| 247 |
"""
|
| 248 |
-
OpenAI-compatible
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
return {
|
| 251 |
"object": "list",
|
|
@@ -259,56 +297,176 @@ async def list_models():
|
|
| 259 |
]
|
| 260 |
}
|
| 261 |
|
| 262 |
-
# ==============
|
| 263 |
|
| 264 |
-
@app.post(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
async def stream(item: Validation):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
system_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.'
|
| 267 |
E_INST = "</s>"
|
| 268 |
user, assistant = "<|user|>", "<|assistant|>"
|
| 269 |
prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt.strip()}{E_INST}\n{assistant}\n"
|
| 270 |
return {"response": call_llm(prompt)}
|
| 271 |
|
| 272 |
-
|
| 273 |
-
async def increment_from_prompt(item: Validation):
|
| 274 |
-
match = re.search(r'\d+', item.prompt)
|
| 275 |
-
if match:
|
| 276 |
-
increment_value = int(match.group())
|
| 277 |
-
result = increment_and_print(increment_value)
|
| 278 |
-
else:
|
| 279 |
-
result = increment_and_print(0)
|
| 280 |
-
return {"counter": result}
|
| 281 |
|
| 282 |
-
@app.post(
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
-
@app.post(
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
async def root():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
return {
|
| 303 |
"message": "Luminous API - OpenAI Compatible Coding Assistant",
|
| 304 |
"status": "active",
|
| 305 |
-
"model": "Qwen2.5-Coder-7B-Instruct"
|
|
|
|
|
|
|
| 306 |
}
|
| 307 |
|
| 308 |
-
@app.get(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
async def health_check():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
return {
|
| 311 |
"status": "healthy",
|
| 312 |
"model_loaded": _llm_model is not None,
|
| 313 |
-
"
|
| 314 |
-
}
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
+
from typing import List, Optional
|
|
|
|
| 4 |
from ctransformers import AutoModelForCausalLM
|
| 5 |
import os
|
| 6 |
import uuid
|
|
|
|
| 9 |
|
| 10 |
# ============== Pydantic Models ==============
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
class Validation(BaseModel):
|
| 13 |
prompt: str
|
| 14 |
|
| 15 |
+
class EthConversionRequest(BaseModel):
|
| 16 |
+
value: float
|
| 17 |
+
from_unit: str = "eth" # eth, gwei, or wei
|
| 18 |
+
|
| 19 |
# OpenAI-compatible models
|
| 20 |
class Message(BaseModel):
|
| 21 |
role: str
|
|
|
|
| 53 |
description="""
|
| 54 |
## Luminous Coding Assistant API
|
| 55 |
|
| 56 |
+
OpenAI-compatible API powered by Qwen2.5-Coder-7B for code generation and assistance.
|
| 57 |
|
| 58 |
### Features
|
| 59 |
+
* 🤖 AI-powered code generation with Qwen2.5-Coder
|
| 60 |
+
* 🔌 OpenAI-compatible endpoints for Cursor IDE integration
|
| 61 |
+
* 💰 ETH unit conversion utilities (Wei ↔ Gwei ↔ ETH)
|
| 62 |
+
* 💻 Optimized for coding tasks and assistance
|
| 63 |
+
|
| 64 |
+
### Integration with Cursor IDE
|
| 65 |
+
1. Go to Cursor Settings → Models → Override OpenAI Base URL
|
| 66 |
+
2. Set Base URL: `https://jeeltcraft-luminous.hf.space/v1`
|
| 67 |
+
3. Model name: `qwen2.5-coder-7b`
|
| 68 |
+
4. Add any dummy API key
|
| 69 |
""",
|
| 70 |
+
version="1.0.0",
|
|
|
|
| 71 |
contact={
|
| 72 |
"name": "Jeeltcraft",
|
| 73 |
"url": "https://huggingface.co/jeeltcraft",
|
|
|
|
| 86 |
},
|
| 87 |
{
|
| 88 |
"name": "Utilities",
|
| 89 |
+
"description": "ETH conversion and helper functions",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
},
|
| 91 |
],
|
| 92 |
swagger_ui_parameters={
|
| 93 |
"deepLinking": True,
|
| 94 |
"displayRequestDuration": True,
|
| 95 |
+
"docExpansion": "none",
|
| 96 |
+
"syntaxHighlight.theme": "monokai",
|
| 97 |
"defaultModelsExpandDepth": 2,
|
| 98 |
}
|
| 99 |
)
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
# Global variable to hold the model
|
| 102 |
_llm_model = None
|
| 103 |
|
|
|
|
| 151 |
|
| 152 |
# ============== Helper Functions ==============
|
| 153 |
|
| 154 |
+
def convert_eth_units(value: float, from_unit: str = "eth") -> dict:
|
| 155 |
+
"""
|
| 156 |
+
Convert ETH value to wei and gwei.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
value: The numeric value to convert
|
| 160 |
+
from_unit: The source unit ('eth', 'gwei', or 'wei')
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
Dictionary with conversions to all units
|
| 164 |
+
"""
|
| 165 |
+
# Convert input to wei first
|
| 166 |
+
if from_unit.lower() == "eth":
|
| 167 |
+
wei_value = int(value * 10**18)
|
| 168 |
+
elif from_unit.lower() == "gwei":
|
| 169 |
+
wei_value = int(value * 10**9)
|
| 170 |
+
elif from_unit.lower() == "wei":
|
| 171 |
+
wei_value = int(value)
|
| 172 |
+
else:
|
| 173 |
+
raise ValueError("Invalid unit. Use 'eth', 'gwei', or 'wei'")
|
| 174 |
+
|
| 175 |
+
# Convert wei to all units
|
| 176 |
+
eth_value = wei_value / 10**18
|
| 177 |
+
gwei_value = wei_value / 10**9
|
| 178 |
+
|
| 179 |
+
return {
|
| 180 |
+
"input": {
|
| 181 |
+
"value": value,
|
| 182 |
+
"unit": from_unit
|
| 183 |
+
},
|
| 184 |
+
"conversions": {
|
| 185 |
+
"wei": str(wei_value), # String to avoid JavaScript number overflow
|
| 186 |
+
"gwei": gwei_value,
|
| 187 |
+
"eth": eth_value
|
| 188 |
+
},
|
| 189 |
+
"formatted": {
|
| 190 |
+
"wei": f"{wei_value:,} wei",
|
| 191 |
+
"gwei": f"{gwei_value:,.2f} gwei",
|
| 192 |
+
"eth": f"{eth_value:.18f} ETH"
|
| 193 |
}
|
| 194 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
# ============== OpenAI-Compatible Endpoints ==============
|
| 197 |
|
| 198 |
+
@app.post(
|
| 199 |
+
"/v1/chat/completions",
|
| 200 |
+
response_model=ChatCompletionResponse,
|
| 201 |
+
tags=["OpenAI Compatible"],
|
| 202 |
+
summary="Create chat completion",
|
| 203 |
+
response_description="Returns the model's response to the conversation"
|
| 204 |
+
)
|
| 205 |
async def chat_completions(request: ChatCompletionRequest):
|
| 206 |
"""
|
| 207 |
+
Create a chat completion using OpenAI-compatible format.
|
| 208 |
+
|
| 209 |
+
This endpoint is designed for integration with Cursor IDE and other
|
| 210 |
+
OpenAI-compatible clients. It accepts a conversation history and returns
|
| 211 |
+
the model's response.
|
| 212 |
+
|
| 213 |
+
## Parameters
|
| 214 |
+
- **model**: Model identifier (use `qwen2.5-coder-7b` for this API)
|
| 215 |
+
- **messages**: Array of conversation messages with role and content
|
| 216 |
+
- Role can be: `system`, `user`, or `assistant`
|
| 217 |
+
- **temperature**: Controls randomness (0.0 = deterministic, 2.0 = very random)
|
| 218 |
+
- **max_tokens**: Maximum number of tokens to generate in the response
|
| 219 |
+
- **stream**: Whether to stream the response (not yet implemented)
|
| 220 |
+
|
| 221 |
+
## Example Request
|
| 222 |
+
```json
|
| 223 |
+
{
|
| 224 |
+
"model": "qwen2.5-coder-7b",
|
| 225 |
+
"messages": [
|
| 226 |
+
{"role": "system", "content": "You are a helpful coding assistant."},
|
| 227 |
+
{"role": "user", "content": "Write a Python function to reverse a string"}
|
| 228 |
+
],
|
| 229 |
+
"temperature": 0.7,
|
| 230 |
+
"max_tokens": 512
|
| 231 |
+
}
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
## Returns
|
| 235 |
+
A chat completion response with the model's generated text, token usage,
|
| 236 |
+
and other metadata.
|
| 237 |
"""
|
| 238 |
try:
|
| 239 |
# Extract the last user message from conversation history
|
|
|
|
| 243 |
)
|
| 244 |
|
| 245 |
# Format prompt for Qwen2.5-Coder
|
|
|
|
| 246 |
formatted_prompt = f"<|im_start|>system\nYou are a helpful coding assistant.<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant\n"
|
| 247 |
|
| 248 |
# Call your LLM
|
|
|
|
| 272 |
except Exception as e:
|
| 273 |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 274 |
|
| 275 |
+
@app.get(
|
| 276 |
+
"/v1/models",
|
| 277 |
+
tags=["OpenAI Compatible"],
|
| 278 |
+
summary="List available models",
|
| 279 |
+
response_description="Returns a list of available models"
|
| 280 |
+
)
|
| 281 |
async def list_models():
|
| 282 |
"""
|
| 283 |
+
List all available models in OpenAI-compatible format.
|
| 284 |
+
|
| 285 |
+
This endpoint returns the models available through this API.
|
| 286 |
+
Use the model ID when making requests to `/v1/chat/completions`.
|
| 287 |
"""
|
| 288 |
return {
|
| 289 |
"object": "list",
|
|
|
|
| 297 |
]
|
| 298 |
}
|
| 299 |
|
| 300 |
+
# ============== Direct LLM Endpoints ==============
|
| 301 |
|
| 302 |
+
@app.post(
|
| 303 |
+
"/llm_on_cpu",
|
| 304 |
+
tags=["LLM"],
|
| 305 |
+
summary="Direct LLM inference",
|
| 306 |
+
response_description="Returns the model's raw response"
|
| 307 |
+
)
|
| 308 |
async def stream(item: Validation):
|
| 309 |
+
"""
|
| 310 |
+
Direct inference endpoint for simple prompts.
|
| 311 |
+
|
| 312 |
+
This endpoint provides direct access to the LLM without the OpenAI wrapper.
|
| 313 |
+
Useful for custom prompt formatting.
|
| 314 |
+
|
| 315 |
+
- **prompt**: Your input text prompt
|
| 316 |
+
"""
|
| 317 |
system_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.'
|
| 318 |
E_INST = "</s>"
|
| 319 |
user, assistant = "<|user|>", "<|assistant|>"
|
| 320 |
prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt.strip()}{E_INST}\n{assistant}\n"
|
| 321 |
return {"response": call_llm(prompt)}
|
| 322 |
|
| 323 |
+
# ============== Utility Endpoints ==============
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
@app.post(
|
| 326 |
+
"/convert_eth_units",
|
| 327 |
+
tags=["Utilities"],
|
| 328 |
+
summary="Convert ETH units (ETH ↔ Gwei ↔ Wei)",
|
| 329 |
+
response_description="Returns conversions to all ETH units"
|
| 330 |
+
)
|
| 331 |
+
async def convert_units(request: EthConversionRequest):
|
| 332 |
+
"""
|
| 333 |
+
Convert between Ethereum units: ETH, Gwei, and Wei.
|
| 334 |
+
|
| 335 |
+
## Ethereum Units Explained
|
| 336 |
+
- **ETH**: The base unit (1 ETH = 1,000,000,000,000,000,000 wei)
|
| 337 |
+
- **Gwei**: Gigawei, commonly used for gas prices (1 Gwei = 1,000,000,000 wei)
|
| 338 |
+
- **Wei**: The smallest unit of Ether (1 wei = 0.000000000000000001 ETH)
|
| 339 |
+
|
| 340 |
+
## Parameters
|
| 341 |
+
- **value**: The numeric value to convert
|
| 342 |
+
- **from_unit**: Source unit - `eth`, `gwei`, or `wei` (default: `eth`)
|
| 343 |
+
|
| 344 |
+
## Example Requests
|
| 345 |
+
|
| 346 |
+
Convert 1 ETH to all units:
|
| 347 |
+
```json
|
| 348 |
+
{
|
| 349 |
+
"value": 1,
|
| 350 |
+
"from_unit": "eth"
|
| 351 |
+
}
|
| 352 |
+
```
|
| 353 |
+
|
| 354 |
+
Convert 50 Gwei to all units:
|
| 355 |
+
```json
|
| 356 |
+
{
|
| 357 |
+
"value": 50,
|
| 358 |
+
"from_unit": "gwei"
|
| 359 |
+
}
|
| 360 |
+
```
|
| 361 |
+
|
| 362 |
+
## Returns
|
| 363 |
+
Conversions to Wei, Gwei, and ETH with both numeric and formatted values.
|
| 364 |
+
"""
|
| 365 |
+
try:
|
| 366 |
+
result = convert_eth_units(request.value, request.from_unit)
|
| 367 |
+
return result
|
| 368 |
+
except ValueError as e:
|
| 369 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 370 |
+
except Exception as e:
|
| 371 |
+
raise HTTPException(status_code=500, detail=f"Conversion error: {str(e)}")
|
| 372 |
|
| 373 |
+
@app.post(
|
| 374 |
+
"/eth_to_units",
|
| 375 |
+
tags=["Utilities"],
|
| 376 |
+
summary="Quick convert: ETH to Wei/Gwei",
|
| 377 |
+
response_description="Returns Wei and Gwei values"
|
| 378 |
+
)
|
| 379 |
+
async def eth_to_units(item: Validation):
|
| 380 |
+
"""
|
| 381 |
+
Quick converter: Extract a number from text and convert from ETH to Wei and Gwei.
|
| 382 |
+
|
| 383 |
+
This endpoint extracts the first number found in the prompt and treats it as ETH,
|
| 384 |
+
then converts it to Wei and Gwei. Useful for quick conversions in chat interfaces.
|
| 385 |
+
|
| 386 |
+
## Example
|
| 387 |
+
Send prompt: `"Convert 0.5 ETH"` or just `"0.5"`
|
| 388 |
+
|
| 389 |
+
Returns the value in Wei and Gwei.
|
| 390 |
+
|
| 391 |
+
- **prompt**: Text containing an ETH amount (number will be extracted)
|
| 392 |
+
"""
|
| 393 |
+
try:
|
| 394 |
+
# Extract number from prompt
|
| 395 |
+
match = re.search(r'\d+\.?\d*', item.prompt)
|
| 396 |
+
if match:
|
| 397 |
+
eth_value = float(match.group())
|
| 398 |
+
result = convert_eth_units(eth_value, "eth")
|
| 399 |
+
return result
|
| 400 |
+
else:
|
| 401 |
+
raise HTTPException(status_code=400, detail="No numeric value found in prompt")
|
| 402 |
+
except ValueError as e:
|
| 403 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 404 |
+
except Exception as e:
|
| 405 |
+
raise HTTPException(status_code=500, detail=f"Conversion error: {str(e)}")
|
| 406 |
+
|
| 407 |
+
@app.get(
|
| 408 |
+
"/quick_convert/{value}/{unit}",
|
| 409 |
+
tags=["Utilities"],
|
| 410 |
+
summary="Quick URL-based ETH conversion",
|
| 411 |
+
response_description="Returns conversions to all units"
|
| 412 |
+
)
|
| 413 |
+
async def quick_convert(value: float, unit: str = "eth"):
|
| 414 |
+
"""
|
| 415 |
+
Quick conversion via URL path parameters.
|
| 416 |
+
|
| 417 |
+
## Usage Examples
|
| 418 |
+
- `/quick_convert/1/eth` - Convert 1 ETH to Wei and Gwei
|
| 419 |
+
- `/quick_convert/50/gwei` - Convert 50 Gwei to ETH and Wei
|
| 420 |
+
- `/quick_convert/1000000000/wei` - Convert 1,000,000,000 Wei to ETH and Gwei
|
| 421 |
+
|
| 422 |
+
## Parameters
|
| 423 |
+
- **value**: Numeric amount to convert
|
| 424 |
+
- **unit**: Source unit (`eth`, `gwei`, or `wei`)
|
| 425 |
+
"""
|
| 426 |
+
try:
|
| 427 |
+
result = convert_eth_units(value, unit)
|
| 428 |
+
return result
|
| 429 |
+
except ValueError as e:
|
| 430 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 431 |
+
except Exception as e:
|
| 432 |
+
raise HTTPException(status_code=500, detail=f"Conversion error: {str(e)}")
|
| 433 |
|
| 434 |
+
# ============== Health & Info Endpoints ==============
|
| 435 |
+
|
| 436 |
+
@app.get(
|
| 437 |
+
"/",
|
| 438 |
+
tags=["Utilities"],
|
| 439 |
+
summary="API root information",
|
| 440 |
+
response_description="Returns API status and information"
|
| 441 |
+
)
|
| 442 |
async def root():
|
| 443 |
+
"""
|
| 444 |
+
Get basic information about the API.
|
| 445 |
+
|
| 446 |
+
Returns the API name, status, and current model being used.
|
| 447 |
+
"""
|
| 448 |
return {
|
| 449 |
"message": "Luminous API - OpenAI Compatible Coding Assistant",
|
| 450 |
"status": "active",
|
| 451 |
+
"model": "Qwen2.5-Coder-7B-Instruct",
|
| 452 |
+
"docs": "/docs",
|
| 453 |
+
"openapi": "/openapi.json"
|
| 454 |
}
|
| 455 |
|
| 456 |
+
@app.get(
|
| 457 |
+
"/health",
|
| 458 |
+
tags=["Utilities"],
|
| 459 |
+
summary="Health check",
|
| 460 |
+
response_description="Returns health status and diagnostics"
|
| 461 |
+
)
|
| 462 |
async def health_check():
|
| 463 |
+
"""
|
| 464 |
+
Check the health status of the API.
|
| 465 |
+
|
| 466 |
+
Returns information about model loading status.
|
| 467 |
+
"""
|
| 468 |
return {
|
| 469 |
"status": "healthy",
|
| 470 |
"model_loaded": _llm_model is not None,
|
| 471 |
+
"api_version": "1.0.0"
|
| 472 |
+
}
|