pasteproof-pii-detector
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|---|---|---|---|---|---|---|
| 0.0003 | 0.3555 | 1000 | 0.0001 | 0.9999 | 1.0000 | 0.9999 |
| 0.0001 | 0.7110 | 2000 | 0.0002 | 0.9988 | 0.9993 | 0.9991 |
| 0.0001 | 1.0665 | 3000 | 0.0000 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 1.4220 | 4000 | 0.0000 | 1.0 | 1.0 | 1.0 |
| 0.0 | 1.7775 | 5000 | 0.0000 | 1.0 | 1.0 | 1.0 |
| 0.0 | 2.1330 | 6000 | 0.0000 | 1.0 | 1.0 | 1.0 |
| 0.0 | 2.4884 | 7000 | 0.0000 | 1.0 | 1.0 | 1.0 |
| 0.0 | 2.8439 | 8000 | 0.0000 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 28
Model tree for joneauxedgar/pasteproof-pii-detector
Base model
answerdotai/ModernBERT-base