Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. This particular checkpoint is finetuned on food and restaurant reviews and is optimized to answer questions from users about this topic.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("deman539/food-review-ft-snowflake-l-f18eeff6-7504-48c7-af10-1d2d85ca8caa")
# Run inference
sentences = [
'What aspects of 10 Downing Street does Ashutosh Tiwari highlight in his review? ',
'Restaurant: 10 Downing Street\nReviewer: Ashutosh Tiwari\nReview: 10D is one of the best places to hangout witj friends and families. Great ambience with awesome views. Food and staff behaviour is very kind.\nRating: 4\nMetadata: 4 Reviews , 84 Followers\nTime: 1/5/2019 17:17\nPictures: 0\n7514:',
'Restaurant: Cafe Eclat\nReviewer: Kamal Prakash\nReview: I really liked the ambience. The blue cushions complimented the tables with wooden finish. The glass doors added to the elegance. The place was very calm. I had the cheesecake here, it literally melted in my mouth, absolutely loved it. One downside is that the place is a bit expensive.\nRating: 4\nMetadata: 14 Reviews , 31 Followers\nTime: 5/10/2018 18:59\nPictures: 2\n7514:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
InformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.905 |
| cosine_accuracy@3 | 0.975 |
| cosine_accuracy@5 | 0.985 |
| cosine_accuracy@10 | 0.995 |
| cosine_precision@1 | 0.905 |
| cosine_precision@3 | 0.325 |
| cosine_precision@5 | 0.197 |
| cosine_precision@10 | 0.0995 |
| cosine_recall@1 | 0.905 |
| cosine_recall@3 | 0.975 |
| cosine_recall@5 | 0.985 |
| cosine_recall@10 | 0.995 |
| cosine_ndcg@10 | 0.9548 |
| cosine_mrr@10 | 0.9413 |
| cosine_map@100 | 0.9418 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
What aspects of Khaan Saab did Dakshay Singh highlight in his review? |
Restaurant: Khaan Saab |
Who provided great service according to Dakshay Singh's review of Khaan Saab? |
Restaurant: Khaan Saab |
What specific type of parathas did Raj Rohit praise in his review of Triptify? |
Restaurant: Triptify |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 10multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | cosine_ndcg@10 |
|---|---|---|---|
| 0.3125 | 50 | - | 0.9239 |
| 0.625 | 100 | - | 0.9313 |
| 0.9375 | 150 | - | 0.9307 |
| 1.0 | 160 | - | 0.9301 |
| 1.25 | 200 | - | 0.9382 |
| 1.5625 | 250 | - | 0.9454 |
| 1.875 | 300 | - | 0.9501 |
| 2.0 | 320 | - | 0.9532 |
| 2.1875 | 350 | - | 0.9501 |
| 2.5 | 400 | - | 0.9559 |
| 2.8125 | 450 | - | 0.9505 |
| 3.0 | 480 | - | 0.9529 |
| 3.125 | 500 | 0.5558 | 0.9518 |
| 3.4375 | 550 | - | 0.9425 |
| 3.75 | 600 | - | 0.9547 |
| 4.0 | 640 | - | 0.9551 |
| 4.0625 | 650 | - | 0.9539 |
| 4.375 | 700 | - | 0.9637 |
| 4.6875 | 750 | - | 0.9564 |
| 5.0 | 800 | - | 0.9624 |
| 5.3125 | 850 | - | 0.9648 |
| 5.625 | 900 | - | 0.9577 |
| 5.9375 | 950 | - | 0.9601 |
| 6.0 | 960 | - | 0.9632 |
| 6.25 | 1000 | 0.0655 | 0.9613 |
| 6.5625 | 1050 | - | 0.9544 |
| 6.875 | 1100 | - | 0.9551 |
| 7.0 | 1120 | - | 0.9558 |
| 7.1875 | 1150 | - | 0.9562 |
| 7.5 | 1200 | - | 0.9566 |
| 7.8125 | 1250 | - | 0.9546 |
| 8.0 | 1280 | - | 0.9569 |
| 8.125 | 1300 | - | 0.9584 |
| 8.4375 | 1350 | - | 0.9573 |
| 8.75 | 1400 | - | 0.9566 |
| 9.0 | 1440 | - | 0.9569 |
| 9.0625 | 1450 | - | 0.9552 |
| 9.375 | 1500 | 0.0417 | 0.9549 |
| 9.6875 | 1550 | - | 0.9548 |
| 10.0 | 1600 | - | 0.9548 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-l