Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

⚠️ !!! 等待信息,填充链接

Contents

About the Dataset

  • This dataset was created using LeRobot
  • ~130 hours real world scenarios
  • Main Tasks
    • FlattenFold
      • Single task
      • Initial state: T-shirts are randomly tossed onto the table, presenting random crumpled configurations
      • Manipulation task: Operate the robotic arm to unfold the garment, then fold it
    • HangCloth
      • Single task
      • Initial state: Hanger is randomly placed, garment is randomly positioned on the table
      • Manipulation task: Operate the robotic arm to thread the hanger through the garment, then hang it on the rod
    • TeeShirtSort
      • Garment classification and arrangement task
      • Initial state: Randomly pick a garment from the laundry basket
      • Classification: Determine whether the garment is a T-shirt or a dress shirt
      • Manipulation task:
        • If it is a T-shirt, fold the garment
        • If it is a dress shirt, expose the collar, then push it to one side of the table
  • Count of the dataset
    Task Base (episodes) DAgger (episodes) Total
    FlattenFold 3,055 3,457 6,512
    HangCloth 6954 686 7640
    TeeShirtSort 5988 - 5988
    Total 19,608 4,143 23,751

Dataset Structure

Folder hierarchy

Under each task directory, data is partitioned into two subsets: base and dagger.

  • base contains original demonstration trajectories of robotic arm manipulation for garment arrangement tasks.
  • dagger
    contains on-policy recovery trajectories collected via iterative DAgger, designed to populate failure recovery modes absent in static demonstrations.
Kai0-data/
├── FlattenFold/
│   ├── base/
│   │   ├── data/
│   │   │   ├── chunk-000/
│   │   │   │   ├── episode_000000.parquet
│   │   │   │   ├── episode_000001.parquet
│   │   │   │   └── ...
│   │   │   └── ...
│   │   ├── videos/
│   │   │   ├── chunk-000/
│   │   │   │   ├── observation.images.hand_left/
│   │   │   │   │   ├── episode_000000.mp4
│   │   │   │   │   ├── episode_000001.mp4
│   │   │   │   │   └── ...
│   │   │   │   ├── observation.images.hand_right/
│   │   │   │   │   ├── episode_000000.mp4
│   │   │   │   │   ├── episode_000001.mp4
│   │   │   │   │   └── ...
│   │   │   │   ├── observation.images.top_head/
│   │   │   │   │   ├── episode_000000.mp4
│   │   │   │   │   ├── episode_000001.mp4
│   │   │   │   │   └── ...
│   │   │   │   └── ...
│   │   │   └── ...
│   │   └── meta/
│   │       ├── info.json
│   │       ├── episodes.jsonl
│   │       ├── tasks.jsonl
│   │       └── episodes_stats.jsonl
│   └── dagger/
├── HangCloth/
│   ├── base/
│   └── dagger/
├── TeeShirtSort/
│   ├── base/
│   └── dagger/
└── README.md

Details

info.json

the basic struct of the info.json

{
    "codebase_version": "v2.1",
    "robot_type": "agilex",
    "total_episodes": ...,
    "total_frames": ...,
    "total_tasks": ...,
    "total_videos": ...,
    "total_chunks": ...,
    "chunks_size": ...,
    "fps": ...,
    "splits": {
        "train": ...
    },
    "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
    "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
    "features": {
        "observation.images.top_head": {
            "dtype": "video",
            "shape": [
                480,
                640,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ],
            "info": {
                "video.height": 480,
                "video.width": 640,
                "video.codec": "av1",
                "video.pix_fmt": "yuv420p",
                "video.is_depth_map": false,
                "video.fps": 30,
                "video.channels": 3,
                "has_audio": false
            }
        },
        "observation.images.hand_left": {
            ...
        },
        "observation.images.hand_right": {
            ...
        },
        "observation.state": {
            "dtype": "float32",
            "shape": [
                14
            ],
            "names": null
        },
        "action": {
            "dtype": "float32",
            "shape": [
                14
            ],
            "names": null
        },
        "timestamp": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "frame_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "episode_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "task_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        }
    }
}

Parquet file format

Field Name shape Meaning
observation.state [N, 14] left [:, :6], right [:, 7:13], joint angle
left[:, 6], right [:, 13] , gripper open range
action [N, 14] left [:, :6], right [:, 7:13], joint angle
left[:, 6], right [:, 13] , gripper open range
timestamp [N, 1] Time elapsed since the start of the episode (in seconds)
frame_index [N, 1] Index of this frame within the current episode (0-indexed)
episode_index [N, 1] Index of the episode this frame belongs to
index [N, 1] Global unique index across all frames in the dataset
task_index [N, 1] Index identifying the task type being performed

tasks.jsonl

Contains task language prompts (natural language instructions) that specify the manipulation task to be performed. Each entry maps a task_index to its corresponding task description, which can be used for language-conditioned policy training.

Download the Dataset

Python Script

from huggingface_hub import hf_hub_download, snapshot_download
from datasets import load_dataset

# Download a single file
hf_hub_download(
    repo_id="OpenDriveLab-org/kai0", 
    filename="episodes.jsonl",
    subfolder="meta",
    repo_type="dataset",
    local_dir="where/you/want/to/save"
)

# Download a specific folder
snapshot_download(
    repo_id="OpenDriveLab-org/kai0", 
    local_dir="/where/you/want/to/save",
    repo_type="dataset",
    allow_patterns=["data/*"]
)

# Load the entire dataset
dataset = load_dataset("OpenDriveLab-org/kai0") 

Terminal (CLI)

# Download a single file
hf download OpenDriveLab-org/kai0 \
    --include "meta/info.json" \
    --repo-type dataset \
    --local-dir "/where/you/want/to/save"

# Download a specific folder
hf download OpenDriveLab-org/kai0 \
    --repo-type dataset \
    --include "meta/*" \
    --local-dir "/where/you/want/to/save"

# Download the entire dataset
hf download OpenDriveLab-org/kai0 \
    --repo-type dataset \
    --local-dir "/where/you/want/to/save"

Load the dataset

For LeRobot version < 0.4.0

Choose the appropriate import based on your version:

Version Import Path
<= 0.1.0 from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
> 0.1.0 and < 0.4.0 from lerobot.datasets.lerobot_dataset import LeRobotDataset
# For version <= 0.1.0
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset

# For version > 0.1.0 and < 0.4.0
from lerobot.datasets.lerobot_dataset import LeRobotDataset

# Load the dataset
dataset = LeRobotDataset(repo_id='where/the/dataset/you/stored')

For LeRobot version >= 0.4.0

You need to migrate the dataset from v2.1 to v3.0 first. See the official documentation: Migrate the dataset from v2.1 to v3.0

python -m lerobot.datasets.v30.convert_dataset_v21_to_v30 --repo-id=<HF_USER/DATASET_ID>

⚠️ !!! 等待信息填充

License and Citation

All the data and code within this repo are under . Please consider citing our project if it helps your research.

@misc{,
  title={},
  author={},
  howpublished={\url{}},
  year={}
}
Downloads last month
-