YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

llama-cpp-python Prebuilt Wheels for HuggingFace Spaces (Free CPU)

Prebuilt llama-cpp-python wheels optimized for HuggingFace Spaces free tier (16GB RAM, 2 vCPU, CPU-only).

Purpose

These wheels include the latest llama.cpp backend with support for newer model architectures:

  • LFM2 MoE architecture (32 experts) for LFM2-8B-A1B
  • Latest IQ4_XS quantization support
  • OpenBLAS CPU acceleration

Available Wheels

Wheel File Python Platform llama.cpp Features
llama_cpp_python-0.3.22-cp310-cp310-linux_x86_64.whl 3.10 Linux x86_64 Latest (Jan 2026) LFM2 MoE, IQ4_XS, OpenBLAS

Usage

Setting Up HuggingFace Spaces with Python 3.10

These wheels are built for Python 3.10. To use them in HuggingFace Spaces:

Step 1: Switch to Docker

  1. Go to your Space settings
  2. Change "Space SDK" from Gradio to Docker
  3. This enables custom Dockerfile support

Step 2: Create a Dockerfile with Python 3.10

Your Dockerfile should start with python:3.10-slim as the base image:

# Use Python 3.10 explicitly (required for these wheels)
FROM python:3.10-slim

WORKDIR /app

# Install system dependencies
RUN apt-get update && apt-get install -y \
    gcc g++ make cmake git libopenblas-dev \
    && rm -rf /var/lib/apt/lists/*

# Install llama-cpp-python from prebuilt wheel
RUN pip install --no-cache-dir \
    https://huggingface.co/Luigi/llama-cpp-python-wheels-hf-spaces-free-cpu/resolve/main/llama_cpp_python-0.3.22-cp310-cp310-linux_x86_64.whl

# Install other dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application code
COPY . .

# Set environment variables
ENV PYTHONUNBUFFERED=1
ENV GRADIO_SERVER_NAME=0.0.0.0

# Expose Gradio port
EXPOSE 7860

# Run the app
CMD ["python", "app.py"]

Complete Example: See the template below for a production-ready setup.

Why Docker SDK?

When you use a custom Dockerfile:

  • βœ… Explicit Python version control (FROM python:3.10-slim)
  • βœ… Full control over system dependencies
  • βœ… Can use prebuilt wheels for faster builds
  • βœ… No need for runtime.txt (Dockerfile takes precedence)

Dockerfile (Recommended)

FROM python:3.10-slim

# Install system dependencies for OpenBLAS
RUN apt-get update && apt-get install -y \
    gcc g++ make cmake git libopenblas-dev \
    && rm -rf /var/lib/apt/lists/*

# Install llama-cpp-python from prebuilt wheel (fast)
RUN pip install --no-cache-dir \
    https://huggingface.co/Luigi/llama-cpp-python-wheels-hf-spaces-free-cpu/resolve/main/llama_cpp_python-0.3.22-cp310-cp310-linux_x86_64.whl

With Fallback to Source Build

# Try prebuilt wheel first, fall back to source build if unavailable
RUN if pip install --no-cache-dir https://huggingface.co/Luigi/llama-cpp-python-wheels-hf-spaces-free-cpu/resolve/main/llama_cpp_python-0.3.22-cp310-cp310-linux_x86_64.whl; then \
    echo "βœ… Using prebuilt wheel"; \
    else \
    echo "⚠️  Building from source"; \
    pip install --no-cache-dir git+https://github.com/JamePeng/llama-cpp-python.git@5a0391e8; \
    fi

Why This Fork?

These wheels are built from the JamePeng/llama-cpp-python fork (v0.3.22) instead of the official abetlen/llama-cpp-python:

Repository Latest Version llama.cpp LFM2 MoE Support
JamePeng fork v0.3.22 (Jan 2026) Latest βœ… Yes
Official (abetlen) v0.3.16 (Aug 2025) Outdated ❌ No

Key Difference: LFM2-8B-A1B requires llama.cpp backend with LFM2 MoE architecture support (added Oct 2025). The official llama-cpp-python hasn't been updated since August 2025.

Build Configuration

CMAKE_ARGS="-DGGML_OPENBLAS=ON -DGGML_NATIVE=OFF"
FORCE_CMAKE=1
pip wheel --no-deps git+https://github.com/JamePeng/llama-cpp-python.git@5a0391e8

Supported Models

These wheels enable the following IQ4_XS quantized models:

  • LFM2-8B-A1B (LiquidAI) - 8.3B params, 1.5B active, MoE with 32 experts
  • Granite-4.0-h-micro (IBM) - Ultra-fast inference
  • Granite-4.0-h-tiny (IBM) - Balanced speed/quality
  • All standard llama.cpp models (Llama, Gemma, Qwen, etc.)

Performance

  • Build time savings: ~4 minutes β†’ 3 seconds (98% faster)
  • Memory footprint: Fits in 16GB RAM with context up to 8192 tokens
  • CPU acceleration: OpenBLAS optimized for x86_64

Limitations

  • CPU-only: No GPU/CUDA support (optimized for HF Spaces free tier)
  • Platform: Linux x86_64 only
  • Python: 3.10 only (matches HF Spaces default)

License

These wheels include code from:

See upstream repositories for full license information.

Maintenance

Built from: https://github.com/JamePeng/llama-cpp-python/tree/5a0391e8

To rebuild: See build_wheel.sh in the main project repository.

Related

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support