Model Card for Model ID

Model Description

This is a fine-tuned version of aya-expanse-8b for Named Entity Recognition (NER) on Hinglish (Hindi-English code-mixed) text. It helps with token-level entity tagging (PERSON, ORGANISATION, LOCATION, DATE, TIME, GPE, HASHTAG, EMOJI, MENTION, X/Other) in Roman/Devanagari scripts. Achieves 94.90 F1 on COMI-LINGUA test set (5K instances), outperforming the zero-shot inference (59.88 F1).

  • Model type: LoRA-adapted Transformer LLM (8B params, ~32M trainable)
  • License: apache-2.0
  • Finetuned from model: CohereForAI/aya-expanse-8b

Model Sources

Uses

  • NER in Hinglish pipelines (e.g., social media monitoring, news extraction).
  • Example inference prompt:
    Identify named entities in: "लंदन के Madame Tussauds में Deepika Padukone के wax statue का गुरुवार को अनावरण हुआ।"
    Output: [{'लंदन': 'GPE'}, {'के', 'X'}, {'Madame': 'ORGANISATION'}, {'Tussauds': 'ORGANISATION'}, {'में', 'X'}, {'Deepika': 'PERSON'}, {'Padukone': 'PERSON'}, {'के', 'X'}, {'wax': 'X'}, {'statue': 'X'}, {'का' : 'X'}, {'गुरुवार': 'DATE'}, {'को': 'X'}, {'अनावरण': 'X'} {'हुआ।'': 'X'}]
    

Training Details

Training Data

COMI-LINGUA Dataset Card.

Training Procedure

Preprocessing

Tokenized with base tokenizer; instruction templates + few-shot examples. Filtered: ≥5 tokens, no hate/non-Hinglish.

Training Hyperparameters

  • Regime: PEFT LoRA (rank=32, alpha=64, dropout=0.1)
  • Epochs: 3
  • Batch: 4 (accum=8, effective=32)
  • LR: 2e-4 (cosine+warmup=0.1)
  • Weight decay: 0.01

Evaluation

Testing Data

COMI-LINGUA NER test set (5K).

Metrics

Macro P/R/F1 (token-level).

Results

Setting P R F1
Zero-shot 54.47 68.27 59.88
One-shot 79.73 81.44 79.18
Fine-tuned 94.94 94.91 94.90

Summary: SOTA for Hinglish NER; 94.94 F1 on fine-tuned version of aya-expanse-8b.

Bias, Risks, and Limitations

This model is a research preview and is subject to ongoing iterative updates. As such, it provides only limited safety measures.

Model Card Contact

Lingo Research Group at IIT Gandhinagar, India
Mail at: lingo@iitgn.ac.in

Citation

If you use this model, please cite the following work:

@inproceedings{sheth-etal-2025-comi,
    title = "{COMI}-{LINGUA}: Expert Annotated Large-Scale Dataset for Multitask {NLP} in {H}indi-{E}nglish Code-Mixing",
    author = "Sheth, Rajvee  and
      Beniwal, Himanshu  and
      Singh, Mayank",
    editor = "Christodoulopoulos, Christos  and
      Chakraborty, Tanmoy  and
      Rose, Carolyn  and
      Peng, Violet",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
    month = nov,
    year = "2025",
    address = "Suzhou, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2025.findings-emnlp.422/",
    pages = "7973--7992",
    ISBN = "979-8-89176-335-7",
}
Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for LingoIITGN/COMI-LINGUA-NER

Adapter
(23)
this model

Dataset used to train LingoIITGN/COMI-LINGUA-NER