vision_mbert_1024_v5
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2308
- F1: 0.8053
- Precision: 0.7231
- Recall: 0.9087
- Accuracy: 0.9121
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 46
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| 1.1335 | 1.0 | 351 | 0.2351 | 0.7935 | 0.7207 | 0.8826 | 0.9081 |
| 0.8052 | 2.0 | 702 | 0.2259 | 0.7808 | 0.6725 | 0.9308 | 0.8954 |
| 0.7022 | 3.0 | 1053 | 0.2308 | 0.8053 | 0.7231 | 0.9087 | 0.9121 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.5.0
- Tokenizers 0.22.1
- Downloads last month
- 10
Model tree for Dawn123666/vision_mbert_1024_v5
Base model
answerdotai/ModernBERT-base