Spaces:
Sleeping
Sleeping
| # π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨ | |
| # This file was automatically generated from src/transformers/models/qwen3_vl/modular_qwen3_vl.py. | |
| # Do NOT edit this file manually as any edits will be overwritten by the generation of | |
| # the file from the modular. If any change should be done, please apply the change to the | |
| # modular_qwen3_vl.py file directly. One of our CI enforces this. | |
| # π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨ | |
| # coding=utf-8 | |
| # Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from collections.abc import Callable | |
| from dataclasses import dataclass | |
| from typing import Any, Optional, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from transformers.activations import ACT2FN | |
| from transformers.cache_utils import Cache, DynamicCache | |
| from transformers.generation import GenerationMixin | |
| from transformers.integrations import use_kernel_forward_from_hub | |
| from transformers.masking_utils import create_causal_mask | |
| from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | |
| from transformers.modeling_layers import GradientCheckpointingLayer | |
| from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput | |
| from transformers.modeling_rope_utils import dynamic_rope_update, ROPE_INIT_FUNCTIONS | |
| from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel | |
| from transformers.models.qwen3_vl.configuration_qwen3_vl import ( | |
| Qwen3VLConfig, | |
| Qwen3VLTextConfig, | |
| Qwen3VLVisionConfig, | |
| ) | |
| from transformers.processing_utils import Unpack | |
| from transformers.utils import ( | |
| auto_docstring, | |
| is_torchdynamo_compiling, | |
| TransformersKwargs, | |
| ) | |
| from transformers.utils.deprecation import deprecate_kwarg | |
| from transformers.utils.generic import check_model_inputs | |
| class Qwen3VLVisionMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) | |
| self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, hidden_state): | |
| return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state))) | |
| class Qwen3VLVisionPatchEmbed(nn.Module): | |
| def __init__(self, config) -> None: | |
| super().__init__() | |
| self.patch_size = config.patch_size | |
| self.temporal_patch_size = config.temporal_patch_size | |
| self.in_channels = config.in_channels | |
| self.embed_dim = config.hidden_size | |
| kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] | |
| self.proj = nn.Conv3d( | |
| self.in_channels, | |
| self.embed_dim, | |
| kernel_size=kernel_size, | |
| stride=kernel_size, | |
| bias=True, | |
| ) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| target_dtype = self.proj.weight.dtype | |
| hidden_states = hidden_states.view( | |
| -1, | |
| self.in_channels, | |
| self.temporal_patch_size, | |
| self.patch_size, | |
| self.patch_size, | |
| ) | |
| hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view( | |
| -1, self.embed_dim | |
| ) | |
| return hidden_states | |
| class Qwen3VLVisionRotaryEmbedding(nn.Module): | |
| inv_freq: torch.Tensor # fix linting for `register_buffer` | |
| def __init__(self, dim: int, theta: float = 10000.0) -> None: | |
| super().__init__() | |
| inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| def forward(self, seqlen: int) -> torch.Tensor: | |
| seq = torch.arange( | |
| seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype | |
| ) | |
| freqs = torch.outer(seq, self.inv_freq) | |
| return freqs | |
| class Qwen3VLVisionPatchMerger(nn.Module): | |
| def __init__(self, config: Qwen3VLVisionConfig, use_postshuffle_norm=False) -> None: | |
| super().__init__() | |
| self.hidden_size = config.hidden_size * (config.spatial_merge_size**2) | |
| self.use_postshuffle_norm = use_postshuffle_norm | |
| self.norm = nn.LayerNorm( | |
| self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6 | |
| ) | |
| self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size) | |
| self.act_fn = nn.GELU() | |
| self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.norm( | |
| x.view(-1, self.hidden_size) if self.use_postshuffle_norm else x | |
| ).view(-1, self.hidden_size) | |
| x = self.linear_fc2(self.act_fn(self.linear_fc1(x))) | |
| return x | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb_vision( | |
| q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor | |
| ) -> tuple[torch.Tensor, torch.Tensor]: | |
| orig_q_dtype = q.dtype | |
| orig_k_dtype = k.dtype | |
| q, k = q.float(), k.float() | |
| cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| q_embed = q_embed.to(orig_q_dtype) | |
| k_embed = k_embed.to(orig_k_dtype) | |
| return q_embed, k_embed | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
| num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand( | |
| batch, num_key_value_heads, n_rep, slen, head_dim | |
| ) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| def eager_attention_forward( | |
| module: nn.Module, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor], | |
| scaling: float, | |
| dropout: float = 0.0, | |
| **kwargs: Unpack[TransformersKwargs], | |
| ): | |
| key_states = repeat_kv(key, module.num_key_value_groups) | |
| value_states = repeat_kv(value, module.num_key_value_groups) | |
| attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | |
| if attention_mask is not None: | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights = attn_weights + causal_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( | |
| query.dtype | |
| ) | |
| attn_weights = nn.functional.dropout( | |
| attn_weights, p=dropout, training=module.training | |
| ) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| return attn_output, attn_weights | |
| class Qwen3VLVisionAttention(nn.Module): | |
| def __init__(self, config: Qwen3VLVisionConfig) -> None: | |
| super().__init__() | |
| self.dim = config.hidden_size | |
| self.num_heads = config.num_heads | |
| self.head_dim = self.dim // self.num_heads | |
| self.num_key_value_groups = 1 # needed for eager attention | |
| self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) | |
| self.proj = nn.Linear(self.dim, self.dim) | |
| self.scaling = self.head_dim**-0.5 | |
| self.config = config | |
| self.attention_dropout = 0.0 | |
| self.is_causal = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| cu_seqlens: torch.Tensor, | |
| rotary_pos_emb: Optional[torch.Tensor] = None, | |
| position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| seq_length = hidden_states.shape[0] | |
| query_states, key_states, value_states = ( | |
| self.qkv(hidden_states) | |
| .reshape(seq_length, 3, self.num_heads, -1) | |
| .permute(1, 0, 2, 3) | |
| .unbind(0) | |
| ) | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb_vision( | |
| query_states, key_states, cos, sin | |
| ) | |
| query_states = query_states.transpose(0, 1).unsqueeze(0) | |
| key_states = key_states.transpose(0, 1).unsqueeze(0) | |
| value_states = value_states.transpose(0, 1).unsqueeze(0) | |
| attention_interface: Callable = eager_attention_forward | |
| if self.config._attn_implementation != "eager": | |
| attention_interface = ALL_ATTENTION_FUNCTIONS[ | |
| self.config._attn_implementation | |
| ] | |
| if self.config._attn_implementation == "flash_attention_2": | |
| # Flash Attention 2: Use cu_seqlens for variable length attention | |
| max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() | |
| attn_output, _ = attention_interface( | |
| self, | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask=None, | |
| scaling=self.scaling, | |
| dropout=0.0 if not self.training else self.attention_dropout, | |
| cu_seq_lens_q=cu_seqlens, | |
| cu_seq_lens_k=cu_seqlens, | |
| max_length_q=max_seqlen, | |
| max_length_k=max_seqlen, | |
| is_causal=False, | |
| **kwargs, | |
| ) | |
| else: | |
| # Other implementations: Process each chunk separately | |
| lengths = cu_seqlens[1:] - cu_seqlens[:-1] | |
| splits = [ | |
| torch.split(tensor, lengths.tolist(), dim=2) | |
| for tensor in (query_states, key_states, value_states) | |
| ] | |
| attn_outputs = [ | |
| attention_interface( | |
| self, | |
| q, | |
| k, | |
| v, | |
| attention_mask=None, | |
| scaling=self.scaling, | |
| dropout=0.0 if not self.training else self.attention_dropout, | |
| is_causal=False, | |
| **kwargs, | |
| )[0] | |
| for q, k, v in zip(*splits) | |
| ] | |
| attn_output = torch.cat(attn_outputs, dim=1) | |
| attn_output = attn_output.reshape(seq_length, -1).contiguous() | |
| attn_output = self.proj(attn_output) | |
| return attn_output | |
| class Qwen3VLVisionBlock(GradientCheckpointingLayer): | |
| def __init__(self, config, attn_implementation: str = "sdpa") -> None: | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6) | |
| self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6) | |
| self.attn = Qwen3VLVisionAttention(config=config) | |
| self.mlp = Qwen3VLVisionMLP(config=config) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| cu_seqlens: torch.Tensor, | |
| rotary_pos_emb: Optional[torch.Tensor] = None, | |
| position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| hidden_states = hidden_states + self.attn( | |
| self.norm1(hidden_states), | |
| cu_seqlens=cu_seqlens, | |
| rotary_pos_emb=rotary_pos_emb, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| ) | |
| hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) | |
| return hidden_states | |
| class Qwen3VLTextRotaryEmbedding(nn.Module): | |
| inv_freq: torch.Tensor # fix linting for `register_buffer` | |
| def __init__(self, config: Qwen3VLTextConfig, device=None): | |
| super().__init__() | |
| if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | |
| self.rope_type = config.rope_scaling.get("rope_type", "default") | |
| else: | |
| self.rope_type = "default" | |
| self.max_seq_len_cached = config.max_position_embeddings | |
| self.original_max_seq_len = config.max_position_embeddings | |
| self.config = config | |
| self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
| inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| self.original_inv_freq = self.inv_freq | |
| self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20]) | |
| def apply_interleaved_mrope(self, freqs, mrope_section): | |
| """Apply interleaved MRoPE to 3D rotary embeddings. | |
| Reorganizes frequency layout from chunked [TTT...HHH...WWW] to | |
| interleaved [THTHWHTHW...TT], preserving frequency continuity. | |
| args: | |
| x: (3, bs, seq_len, head_dim // 2) | |
| mrope_section: (3,) | |
| returns: | |
| x_t: (bs, seq_len, head_dim // 2) | |
| """ | |
| freqs_t = freqs[0] # just overwrite the first dimension T | |
| for dim, offset in enumerate((1, 2), start=1): # H, W | |
| length = mrope_section[dim] * 3 | |
| idx = slice(offset, length, 3) | |
| freqs_t[..., idx] = freqs[dim, ..., idx] | |
| return freqs_t | |
| # power user: used with advanced RoPE types (e.g. dynamic rope) | |
| def forward(self, x, position_ids): | |
| # In contrast to other models, Qwen3VL has different position ids for the grids | |
| # So we expand the inv_freq to shape (3, ...) | |
| if position_ids.ndim == 2: | |
| position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) | |
| inv_freq_expanded = ( | |
| self.inv_freq[None, None, :, None] | |
| .float() | |
| .expand(3, position_ids.shape[1], -1, 1) | |
| ) | |
| position_ids_expanded = position_ids[ | |
| :, :, None, : | |
| ].float() # shape (3, bs, 1, positions) | |
| device_type = ( | |
| x.device.type | |
| if isinstance(x.device.type, str) and x.device.type != "mps" | |
| else "cpu" | |
| ) | |
| with torch.autocast(device_type=device_type, enabled=False): # Force float32 | |
| freqs = ( | |
| inv_freq_expanded.float() @ position_ids_expanded.float() | |
| ).transpose(2, 3) | |
| freqs = self.apply_interleaved_mrope(freqs, self.mrope_section) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| cos = emb.cos() * self.attention_scaling | |
| sin = emb.sin() * self.attention_scaling | |
| return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
| class Qwen3VLTextRMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps: float = 1e-6) -> None: | |
| """ | |
| Qwen3VLTextRMSNorm is equivalent to T5LayerNorm | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return self.weight * hidden_states.to(input_dtype) | |
| def extra_repr(self): | |
| return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
| """Applies Rotary Position Embedding to the query and key tensors. | |
| Args: | |
| q (`torch.Tensor`): The query tensor. | |
| k (`torch.Tensor`): The key tensor. | |
| cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
| sin (`torch.Tensor`): The sine part of the rotary embedding. | |
| position_ids (`torch.Tensor`, *optional*): | |
| Deprecated and unused. | |
| unsqueeze_dim (`int`, *optional*, defaults to 1): | |
| The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
| sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
| that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
| k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
| cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
| the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
| Returns: | |
| `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
| """ | |
| cos = cos.unsqueeze(unsqueeze_dim) | |
| sin = sin.unsqueeze(unsqueeze_dim) | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| class Qwen3VLTextAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config: Qwen3VLTextConfig, layer_idx: int): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| self.head_dim = getattr( | |
| config, "head_dim", config.hidden_size // config.num_attention_heads | |
| ) | |
| self.num_key_value_groups = ( | |
| config.num_attention_heads // config.num_key_value_heads | |
| ) | |
| self.scaling = self.head_dim**-0.5 | |
| self.attention_dropout = config.attention_dropout | |
| self.is_causal = True | |
| self.q_proj = nn.Linear( | |
| config.hidden_size, | |
| config.num_attention_heads * self.head_dim, | |
| bias=config.attention_bias, | |
| ) | |
| self.k_proj = nn.Linear( | |
| config.hidden_size, | |
| config.num_key_value_heads * self.head_dim, | |
| bias=config.attention_bias, | |
| ) | |
| self.v_proj = nn.Linear( | |
| config.hidden_size, | |
| config.num_key_value_heads * self.head_dim, | |
| bias=config.attention_bias, | |
| ) | |
| self.o_proj = nn.Linear( | |
| config.num_attention_heads * self.head_dim, | |
| config.hidden_size, | |
| bias=config.attention_bias, | |
| ) | |
| self.q_norm = Qwen3VLTextRMSNorm( | |
| self.head_dim, eps=config.rms_norm_eps | |
| ) # unlike olmo, only on the head dim! | |
| self.k_norm = Qwen3VLTextRMSNorm( | |
| self.head_dim, eps=config.rms_norm_eps | |
| ) # thus post q_norm does not need reshape | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| position_embeddings: tuple[torch.Tensor, torch.Tensor], | |
| attention_mask: Optional[torch.Tensor], | |
| past_key_values: Optional[Cache] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs: Unpack[FlashAttentionKwargs], | |
| ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: | |
| input_shape = hidden_states.shape[:-1] | |
| hidden_shape = (*input_shape, -1, self.head_dim) | |
| query_states = self.q_norm( | |
| self.q_proj(hidden_states).view(hidden_shape) | |
| ).transpose(1, 2) | |
| key_states = self.k_norm( | |
| self.k_proj(hidden_states).view(hidden_shape) | |
| ).transpose(1, 2) | |
| value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb( | |
| query_states, key_states, cos, sin | |
| ) | |
| if past_key_values is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_values.update( | |
| key_states, value_states, self.layer_idx, cache_kwargs | |
| ) | |
| attention_interface: Callable = eager_attention_forward | |
| if self.config._attn_implementation != "eager": | |
| attention_interface = ALL_ATTENTION_FUNCTIONS[ | |
| self.config._attn_implementation | |
| ] | |
| attn_output, attn_weights = attention_interface( | |
| self, | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| dropout=0.0 if not self.training else self.attention_dropout, | |
| scaling=self.scaling, | |
| **kwargs, | |
| ) | |
| attn_output = attn_output.reshape(*input_shape, -1).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, attn_weights | |
| class Qwen3VLTextMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, x): | |
| down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
| return down_proj | |
| class Qwen3VLTextDecoderLayer(GradientCheckpointingLayer): | |
| def __init__(self, config: Qwen3VLTextConfig, layer_idx: int): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = Qwen3VLTextAttention(config=config, layer_idx=layer_idx) | |
| self.mlp = Qwen3VLTextMLP(config) | |
| self.input_layernorm = Qwen3VLTextRMSNorm( | |
| config.hidden_size, eps=config.rms_norm_eps | |
| ) | |
| self.post_attention_layernorm = Qwen3VLTextRMSNorm( | |
| config.hidden_size, eps=config.rms_norm_eps | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| position_embeddings: tuple[torch.Tensor, torch.Tensor], | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Cache] = None, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs: Unpack[TransformersKwargs], | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, _ = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| return hidden_states | |
| class Qwen3VLModelOutputWithPast(ModelOutput): | |
| r""" | |
| past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
| `past_key_values` input) to speed up sequential decoding. | |
| rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | |
| The rope index difference between sequence length and multimodal rope. | |
| """ | |
| last_hidden_state: Optional[torch.FloatTensor] = None | |
| past_key_values: Optional[Cache] = None | |
| hidden_states: Optional[tuple[torch.FloatTensor]] = None | |
| attentions: Optional[tuple[torch.FloatTensor]] = None | |
| rope_deltas: Optional[torch.LongTensor] = None | |
| class Qwen3VLPreTrainedModel(PreTrainedModel): | |
| config: Qwen3VLConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["Qwen3VLTextDecoderLayer", "Qwen3VLVisionBlock"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _supports_flash_attn = True | |
| _supports_sdpa = True | |
| _can_compile_fullgraph = True | |
| _supports_attention_backend = True | |
| _can_record_outputs = { | |
| "hidden_states": Qwen3VLTextDecoderLayer, | |
| "attentions": Qwen3VLTextAttention, | |
| } | |
| class Qwen3VLVisionModel(Qwen3VLPreTrainedModel): | |
| config: Qwen3VLVisionConfig | |
| _no_split_modules = ["Qwen3VLVisionBlock"] | |
| def __init__(self, config, *inputs, **kwargs) -> None: | |
| super().__init__(config, *inputs, **kwargs) | |
| self.spatial_merge_size = config.spatial_merge_size | |
| self.patch_size = config.patch_size | |
| self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size | |
| self.patch_embed = Qwen3VLVisionPatchEmbed( | |
| config=config, | |
| ) | |
| self.pos_embed = nn.Embedding( | |
| config.num_position_embeddings, config.hidden_size | |
| ) | |
| self.num_grid_per_side = int(config.num_position_embeddings**0.5) | |
| head_dim = config.hidden_size // config.num_heads | |
| self.rotary_pos_emb = Qwen3VLVisionRotaryEmbedding(head_dim // 2) | |
| self.blocks = nn.ModuleList( | |
| [Qwen3VLVisionBlock(config) for _ in range(config.depth)] | |
| ) | |
| self.merger = Qwen3VLVisionPatchMerger( | |
| config=config, | |
| use_postshuffle_norm=False, | |
| ) | |
| self.deepstack_visual_indexes = config.deepstack_visual_indexes | |
| self.deepstack_merger_list = nn.ModuleList( | |
| [ | |
| Qwen3VLVisionPatchMerger( | |
| config=config, | |
| use_postshuffle_norm=True, | |
| ) | |
| for _ in range(len(config.deepstack_visual_indexes)) | |
| ] | |
| ) | |
| self.gradient_checkpointing = False | |
| def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: | |
| merge_size = self.spatial_merge_size | |
| max_hw = int(grid_thw[:, 1:].max().item()) | |
| freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2) | |
| device = freq_table.device | |
| total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) | |
| pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) | |
| offset = 0 | |
| for num_frames, height, width in grid_thw: | |
| merged_h, merged_w = height // merge_size, width // merge_size | |
| block_rows = torch.arange(merged_h, device=device) # block row indices | |
| block_cols = torch.arange(merged_w, device=device) # block col indices | |
| intra_row = torch.arange( | |
| merge_size, device=device | |
| ) # intra-block row offsets | |
| intra_col = torch.arange( | |
| merge_size, device=device | |
| ) # intra-block col offsets | |
| # Compute full-resolution positions | |
| row_idx = ( | |
| block_rows[:, None, None, None] * merge_size | |
| + intra_row[None, None, :, None] | |
| ) | |
| col_idx = ( | |
| block_cols[None, :, None, None] * merge_size | |
| + intra_col[None, None, None, :] | |
| ) | |
| row_idx = row_idx.expand( | |
| merged_h, merged_w, merge_size, merge_size | |
| ).reshape(-1) | |
| col_idx = col_idx.expand( | |
| merged_h, merged_w, merge_size, merge_size | |
| ).reshape(-1) | |
| coords = torch.stack((row_idx, col_idx), dim=-1) | |
| if num_frames > 1: | |
| coords = coords.repeat(num_frames, 1) | |
| num_tokens = coords.shape[0] | |
| pos_ids[offset : offset + num_tokens] = coords | |
| offset += num_tokens | |
| embeddings = freq_table[pos_ids] # lookup rotary embeddings | |
| embeddings = embeddings.flatten(1) | |
| return embeddings | |
| def fast_pos_embed_interpolate(self, grid_thw): | |
| grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2] | |
| idx_list = [[] for _ in range(4)] | |
| weight_list = [[] for _ in range(4)] | |
| for t, h, w in zip(grid_ts, grid_hs, grid_ws): | |
| h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h) | |
| w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w) | |
| h_idxs_floor = h_idxs.int() | |
| w_idxs_floor = w_idxs.int() | |
| h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) | |
| w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) | |
| dh = h_idxs - h_idxs_floor | |
| dw = w_idxs - w_idxs_floor | |
| base_h = h_idxs_floor * self.num_grid_per_side | |
| base_h_ceil = h_idxs_ceil * self.num_grid_per_side | |
| indices = [ | |
| (base_h[None].T + w_idxs_floor[None]).flatten(), | |
| (base_h[None].T + w_idxs_ceil[None]).flatten(), | |
| (base_h_ceil[None].T + w_idxs_floor[None]).flatten(), | |
| (base_h_ceil[None].T + w_idxs_ceil[None]).flatten(), | |
| ] | |
| weights = [ | |
| ((1 - dh)[None].T * (1 - dw)[None]).flatten(), | |
| ((1 - dh)[None].T * dw[None]).flatten(), | |
| (dh[None].T * (1 - dw)[None]).flatten(), | |
| (dh[None].T * dw[None]).flatten(), | |
| ] | |
| for i in range(4): | |
| idx_list[i].extend(indices[i].tolist()) | |
| weight_list[i].extend(weights[i].tolist()) | |
| idx_tensor = torch.tensor( | |
| idx_list, dtype=torch.long, device=self.pos_embed.weight.device | |
| ) | |
| weight_tensor = torch.tensor( | |
| weight_list, | |
| dtype=self.pos_embed.weight.dtype, | |
| device=self.pos_embed.weight.device, | |
| ) | |
| pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None] | |
| patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3] | |
| patch_pos_embeds = patch_pos_embeds.split( | |
| [h * w for h, w in zip(grid_hs, grid_ws)] | |
| ) | |
| patch_pos_embeds_permute = [] | |
| merge_size = self.config.spatial_merge_size | |
| for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws): | |
| pos_embed = pos_embed.repeat(t, 1) | |
| pos_embed = ( | |
| pos_embed.view( | |
| t, h // merge_size, merge_size, w // merge_size, merge_size, -1 | |
| ) | |
| .permute(0, 1, 3, 2, 4, 5) | |
| .flatten(0, 4) | |
| ) | |
| patch_pos_embeds_permute.append(pos_embed) | |
| patch_pos_embeds = torch.cat(patch_pos_embeds_permute) | |
| return patch_pos_embeds | |
| def forward( | |
| self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): | |
| The final hidden states of the model. | |
| grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): | |
| The temporal, height and width of feature shape of each image in LLM. | |
| Returns: | |
| `torch.Tensor`: hidden_states. | |
| """ | |
| hidden_states = self.patch_embed(hidden_states) | |
| pos_embeds = self.fast_pos_embed_interpolate(grid_thw) | |
| hidden_states = hidden_states + pos_embeds | |
| rotary_pos_emb = self.rot_pos_emb(grid_thw) | |
| seq_len, _ = hidden_states.size() | |
| hidden_states = hidden_states.reshape(seq_len, -1) | |
| rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) | |
| emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) | |
| position_embeddings = (emb.cos(), emb.sin()) | |
| cu_seqlens = torch.repeat_interleave( | |
| grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0] | |
| ).cumsum( | |
| dim=0, | |
| # Select dtype based on the following factors: | |
| # - FA2 requires that cu_seqlens_q must have dtype int32 | |
| # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw | |
| # See https://github.com/huggingface/transformers/pull/34852 for more information | |
| dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, | |
| ) | |
| cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) | |
| deepstack_feature_lists = [] | |
| for layer_num, blk in enumerate(self.blocks): | |
| hidden_states = blk( | |
| hidden_states, | |
| cu_seqlens=cu_seqlens, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| ) | |
| if layer_num in self.deepstack_visual_indexes: | |
| deepstack_feature = self.deepstack_merger_list[ | |
| self.deepstack_visual_indexes.index(layer_num) | |
| ](hidden_states) | |
| deepstack_feature_lists.append(deepstack_feature) | |
| hidden_states = self.merger(hidden_states) | |
| return hidden_states, deepstack_feature_lists | |
| class Qwen3VLTextModel(Qwen3VLPreTrainedModel): | |
| config: Qwen3VLTextConfig | |
| _no_split_modules = ["Qwen3VLTextDecoderLayer"] | |
| def __init__(self, config: Qwen3VLTextConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding( | |
| config.vocab_size, config.hidden_size, self.padding_idx | |
| ) | |
| self.layers = nn.ModuleList( | |
| [ | |
| Qwen3VLTextDecoderLayer(config, layer_idx) | |
| for layer_idx in range(config.num_hidden_layers) | |
| ] | |
| ) | |
| self.norm = Qwen3VLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.rotary_emb = Qwen3VLTextRotaryEmbedding(config=config) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Cache] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| # args for deepstack | |
| visual_pos_masks: Optional[torch.Tensor] = None, | |
| deepstack_visual_embeds: Optional[list[torch.Tensor]] = None, | |
| **kwargs: Unpack[FlashAttentionKwargs], | |
| ) -> Union[tuple, BaseModelOutputWithPast]: | |
| r""" | |
| visual_pos_masks (`torch.Tensor` of shape `(batch_size, seqlen)`, *optional*): | |
| The mask of the visual positions. | |
| deepstack_visual_embeds (`list[torch.Tensor]`, *optional*): | |
| The deepstack visual embeddings. The shape is (num_layers, visual_seqlen, embed_dim). | |
| The feature is extracted from the different visual encoder layers, and fed to the decoder | |
| hidden states. It's from the paper DeepStack(https://arxiv.org/abs/2406.04334). | |
| """ | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError( | |
| "You must specify exactly one of input_ids or inputs_embeds" | |
| ) | |
| # torch.jit.trace() doesn't support cache objects in the output | |
| if use_cache and past_key_values is None and not torch.jit.is_tracing(): | |
| past_key_values = DynamicCache(config=self.config) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| if cache_position is None: | |
| past_seen_tokens = ( | |
| past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| ) | |
| cache_position = torch.arange( | |
| past_seen_tokens, | |
| past_seen_tokens + inputs_embeds.shape[1], | |
| device=inputs_embeds.device, | |
| ) | |
| # the hard coded `3` is for temporal, height and width. | |
| if position_ids is None: | |
| position_ids = cache_position.view(1, 1, -1).expand( | |
| 3, inputs_embeds.shape[0], -1 | |
| ) | |
| elif position_ids.ndim == 2: | |
| position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) | |
| if position_ids.ndim == 3 and position_ids.shape[0] == 4: | |
| text_position_ids = position_ids[0] | |
| position_ids = position_ids[1:] | |
| else: | |
| text_position_ids = position_ids[0] | |
| attention_mask = create_causal_mask( | |
| config=self.config, | |
| input_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| cache_position=cache_position, | |
| past_key_values=past_key_values, | |
| position_ids=text_position_ids, | |
| ) | |
| hidden_states = inputs_embeds | |
| # create position embeddings to be shared across the decoder layers | |
| position_embeddings = self.rotary_emb(hidden_states, position_ids) | |
| # decoder layers | |
| for layer_idx, decoder_layer in enumerate(self.layers): | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=text_position_ids, | |
| past_key_values=past_key_values, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| ) | |
| hidden_states = layer_outputs | |
| # add visual features to the hidden states of first several layers | |
| if deepstack_visual_embeds is not None and layer_idx in range( | |
| len(deepstack_visual_embeds) | |
| ): | |
| hidden_states = self._deepstack_process( | |
| hidden_states, | |
| visual_pos_masks, | |
| deepstack_visual_embeds[layer_idx], | |
| ) | |
| hidden_states = self.norm(hidden_states) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=past_key_values, | |
| ) | |
| def _deepstack_process( | |
| self, | |
| hidden_states: torch.Tensor, | |
| visual_pos_masks: torch.Tensor, | |
| visual_embeds: torch.Tensor, | |
| ): | |
| visual_pos_masks = visual_pos_masks.to(hidden_states.device) | |
| visual_embeds = visual_embeds.to(hidden_states.device, hidden_states.dtype) | |
| local_this = hidden_states[visual_pos_masks, :].clone() + visual_embeds | |
| hidden_states[visual_pos_masks, :] = local_this | |
| return hidden_states | |
| class Qwen3VLModel(Qwen3VLPreTrainedModel): | |
| base_model_prefix = "" | |
| _checkpoint_conversion_mapping = {} | |
| # Reference: fix gemma3 grad acc #37208 | |
| accepts_loss_kwargs = False | |
| config: Qwen3VLConfig | |
| _no_split_modules = ["Qwen3VLTextDecoderLayer", "Qwen3VLVisionBlock"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.visual = Qwen3VLVisionModel._from_config(config.vision_config) | |
| self.language_model = Qwen3VLTextModel._from_config(config.text_config) | |
| self.rope_deltas = None # cache rope_deltas here | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.language_model.get_input_embeddings() | |
| def set_input_embeddings(self, value): | |
| self.language_model.set_input_embeddings(value) | |
| def set_decoder(self, decoder): | |
| self.language_model = decoder | |
| def get_decoder(self): | |
| return self.language_model | |
| def get_rope_index( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| image_grid_thw: Optional[torch.LongTensor] = None, | |
| video_grid_thw: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| ) -> tuple[torch.Tensor, torch.Tensor]: | |
| """Different from the original implementation, Qwen3VL use timestamps rather than absolute time position ids.""" | |
| # Since we use timestamps to seperate videos, like <t1> <vision_start> <frame1> <vision_end> <t2> <vision_start> <frame2> <vision_end>, the video_grid_thw should also be split | |
| if video_grid_thw is not None: | |
| video_grid_thw = torch.repeat_interleave( | |
| video_grid_thw, video_grid_thw[:, 0], dim=0 | |
| ) | |
| video_grid_thw[:, 0] = 1 | |
| spatial_merge_size = self.config.vision_config.spatial_merge_size | |
| image_token_id = self.config.image_token_id | |
| video_token_id = self.config.video_token_id | |
| vision_start_token_id = self.config.vision_start_token_id | |
| mrope_position_deltas = [] | |
| if input_ids is not None and ( | |
| image_grid_thw is not None or video_grid_thw is not None | |
| ): | |
| total_input_ids = input_ids | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(total_input_ids) | |
| position_ids = torch.ones( | |
| 3, | |
| input_ids.shape[0], | |
| input_ids.shape[1], | |
| dtype=input_ids.dtype, | |
| device=input_ids.device, | |
| ) | |
| image_index, video_index = 0, 0 | |
| attention_mask = attention_mask.to(total_input_ids.device) | |
| for i, input_ids in enumerate(total_input_ids): | |
| input_ids = input_ids[attention_mask[i] == 1] | |
| image_nums, video_nums = 0, 0 | |
| vision_start_indices = torch.argwhere( | |
| input_ids == vision_start_token_id | |
| ).squeeze(1) | |
| vision_tokens = input_ids[vision_start_indices + 1] | |
| image_nums = (vision_tokens == image_token_id).sum() | |
| video_nums = (vision_tokens == video_token_id).sum() | |
| input_tokens = input_ids.tolist() | |
| llm_pos_ids_list: list = [] | |
| st = 0 | |
| remain_images, remain_videos = image_nums, video_nums | |
| for _ in range(image_nums + video_nums): | |
| if image_token_id in input_tokens and remain_images > 0: | |
| ed_image = input_tokens.index(image_token_id, st) | |
| else: | |
| ed_image = len(input_tokens) + 1 | |
| if video_token_id in input_tokens and remain_videos > 0: | |
| ed_video = input_tokens.index(video_token_id, st) | |
| else: | |
| ed_video = len(input_tokens) + 1 | |
| if ed_image < ed_video: | |
| t, h, w = ( | |
| image_grid_thw[image_index][0], | |
| image_grid_thw[image_index][1], | |
| image_grid_thw[image_index][2], | |
| ) | |
| image_index += 1 | |
| remain_images -= 1 | |
| ed = ed_image | |
| else: | |
| t, h, w = ( | |
| video_grid_thw[video_index][0], | |
| video_grid_thw[video_index][1], | |
| video_grid_thw[video_index][2], | |
| ) | |
| video_index += 1 | |
| remain_videos -= 1 | |
| ed = ed_video | |
| llm_grid_t, llm_grid_h, llm_grid_w = ( | |
| t.item(), | |
| h.item() // spatial_merge_size, | |
| w.item() // spatial_merge_size, | |
| ) | |
| text_len = ed - st | |
| st_idx = ( | |
| llm_pos_ids_list[-1].max() + 1 | |
| if len(llm_pos_ids_list) > 0 | |
| else 0 | |
| ) | |
| llm_pos_ids_list.append( | |
| torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx | |
| ) | |
| # t_index is always 0 because llm_grid_t is always 1 (we use timestamps to encode the temporal information for videos) | |
| t_index = ( | |
| torch.arange(llm_grid_t) | |
| .view(-1, 1) | |
| .expand(-1, llm_grid_h * llm_grid_w) | |
| .flatten() | |
| ) | |
| h_index = ( | |
| torch.arange(llm_grid_h) | |
| .view(1, -1, 1) | |
| .expand(llm_grid_t, -1, llm_grid_w) | |
| .flatten() | |
| ) | |
| w_index = ( | |
| torch.arange(llm_grid_w) | |
| .view(1, 1, -1) | |
| .expand(llm_grid_t, llm_grid_h, -1) | |
| .flatten() | |
| ) | |
| llm_pos_ids_list.append( | |
| torch.stack([t_index, h_index, w_index]) + text_len + st_idx | |
| ) | |
| st = ed + llm_grid_t * llm_grid_h * llm_grid_w | |
| if st < len(input_tokens): | |
| st_idx = ( | |
| llm_pos_ids_list[-1].max() + 1 | |
| if len(llm_pos_ids_list) > 0 | |
| else 0 | |
| ) | |
| text_len = len(input_tokens) - st | |
| llm_pos_ids_list.append( | |
| torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx | |
| ) | |
| llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) | |
| position_ids[..., i, attention_mask[i] == 1] = llm_positions.to( | |
| position_ids.device | |
| ) | |
| mrope_position_deltas.append( | |
| llm_positions.max() + 1 - len(total_input_ids[i]) | |
| ) | |
| mrope_position_deltas = torch.tensor( | |
| mrope_position_deltas, device=input_ids.device | |
| ).unsqueeze(1) | |
| return position_ids, mrope_position_deltas | |
| else: | |
| if attention_mask is not None: | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| position_ids = ( | |
| position_ids.unsqueeze(0) | |
| .expand(3, -1, -1) | |
| .to(attention_mask.device) | |
| ) | |
| max_position_ids = position_ids.max(0, keepdim=False)[0].max( | |
| -1, keepdim=True | |
| )[0] | |
| mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] | |
| else: | |
| position_ids = ( | |
| torch.arange(input_ids.shape[1], device=input_ids.device) | |
| .view(1, 1, -1) | |
| .expand(3, input_ids.shape[0], -1) | |
| ) | |
| mrope_position_deltas = torch.zeros( | |
| [input_ids.shape[0], 1], | |
| device=input_ids.device, | |
| dtype=input_ids.dtype, | |
| ) | |
| return position_ids, mrope_position_deltas | |
| def get_video_features( | |
| self, | |
| pixel_values_videos: torch.FloatTensor, | |
| video_grid_thw: Optional[torch.LongTensor] = None, | |
| ): | |
| """ | |
| Encodes videos into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. | |
| Args: | |
| pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): | |
| The tensors corresponding to the input videos. | |
| video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
| The temporal, height and width of feature shape of each video in LLM. | |
| """ | |
| # Same implementation as for images | |
| return self.get_image_features(pixel_values_videos, video_grid_thw) | |
| def get_image_features( | |
| self, | |
| pixel_values: torch.FloatTensor, | |
| image_grid_thw: Optional[torch.LongTensor] = None, | |
| ): | |
| """ | |
| Encodes images into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): | |
| The tensors corresponding to the input images. | |
| image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
| The temporal, height and width of feature shape of each image in LLM. | |
| """ | |
| pixel_values = pixel_values.type(self.visual.dtype) | |
| image_embeds, deepstack_image_embeds = self.visual( | |
| pixel_values, grid_thw=image_grid_thw | |
| ) | |
| split_sizes = ( | |
| image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2 | |
| ).tolist() | |
| image_embeds = torch.split(image_embeds, split_sizes) | |
| return image_embeds, deepstack_image_embeds | |
| def get_placeholder_mask( | |
| self, | |
| input_ids: torch.LongTensor, | |
| inputs_embeds: torch.FloatTensor, | |
| image_features: Optional[torch.FloatTensor] = None, | |
| video_features: Optional[torch.FloatTensor] = None, | |
| ): | |
| """ | |
| Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is | |
| equal to the length of multimodal features. If the lengths are different, an error is raised. | |
| """ | |
| if input_ids is None: | |
| special_image_mask = inputs_embeds == self.get_input_embeddings()( | |
| torch.tensor( | |
| self.config.image_token_id, | |
| dtype=torch.long, | |
| device=inputs_embeds.device, | |
| ) | |
| ) | |
| special_image_mask = special_image_mask.all(-1) | |
| special_video_mask = inputs_embeds == self.get_input_embeddings()( | |
| torch.tensor( | |
| self.config.video_token_id, | |
| dtype=torch.long, | |
| device=inputs_embeds.device, | |
| ) | |
| ) | |
| special_video_mask = special_video_mask.all(-1) | |
| else: | |
| special_image_mask = input_ids == self.config.image_token_id | |
| special_video_mask = input_ids == self.config.video_token_id | |
| n_image_tokens = special_image_mask.sum() | |
| special_image_mask = ( | |
| special_image_mask.unsqueeze(-1) | |
| .expand_as(inputs_embeds) | |
| .to(inputs_embeds.device) | |
| ) | |
| if ( | |
| image_features is not None | |
| and inputs_embeds[special_image_mask].numel() != image_features.numel() | |
| ): | |
| raise ValueError( | |
| f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}" | |
| ) | |
| n_video_tokens = special_video_mask.sum() | |
| special_video_mask = ( | |
| special_video_mask.unsqueeze(-1) | |
| .expand_as(inputs_embeds) | |
| .to(inputs_embeds.device) | |
| ) | |
| if ( | |
| video_features is not None | |
| and inputs_embeds[special_video_mask].numel() != video_features.numel() | |
| ): | |
| raise ValueError( | |
| f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}" | |
| ) | |
| return special_image_mask, special_video_mask | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Cache] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| pixel_values_videos: Optional[torch.FloatTensor] = None, | |
| image_grid_thw: Optional[torch.LongTensor] = None, | |
| video_grid_thw: Optional[torch.LongTensor] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs: Unpack[TransformersKwargs], | |
| ) -> Union[tuple, Qwen3VLModelOutputWithPast]: | |
| r""" | |
| image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
| The temporal, height and width of feature shape of each image in LLM. | |
| video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
| The temporal, height and width of feature shape of each video in LLM. | |
| """ | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError( | |
| "You must specify exactly one of input_ids or inputs_embeds" | |
| ) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.get_input_embeddings()(input_ids) | |
| image_mask = None | |
| video_mask = None | |
| if pixel_values is not None: | |
| image_embeds, deepstack_image_embeds = self.get_image_features( | |
| pixel_values, image_grid_thw | |
| ) | |
| image_embeds = torch.cat(image_embeds, dim=0).to( | |
| inputs_embeds.device, inputs_embeds.dtype | |
| ) | |
| image_mask, _ = self.get_placeholder_mask( | |
| input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds | |
| ) | |
| inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) | |
| if pixel_values_videos is not None: | |
| video_embeds, deepstack_video_embeds = self.get_video_features( | |
| pixel_values_videos, video_grid_thw | |
| ) | |
| video_embeds = torch.cat(video_embeds, dim=0).to( | |
| inputs_embeds.device, inputs_embeds.dtype | |
| ) | |
| _, video_mask = self.get_placeholder_mask( | |
| input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds | |
| ) | |
| inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) | |
| visual_pos_masks = None | |
| deepstack_visual_embeds = None | |
| if image_mask is not None and video_mask is not None: | |
| # aggregate visual_pos_masks and deepstack_visual_embeds | |
| image_mask = image_mask[..., 0] | |
| video_mask = video_mask[..., 0] | |
| visual_pos_masks = image_mask | video_mask | |
| deepstack_visual_embeds = [] | |
| image_mask_joint = image_mask[visual_pos_masks] | |
| video_mask_joint = video_mask[visual_pos_masks] | |
| for img_embed, vid_embed in zip( | |
| deepstack_image_embeds, deepstack_video_embeds | |
| ): | |
| embed_joint = img_embed.new_zeros( | |
| visual_pos_masks.sum(), img_embed.shape[-1] | |
| ).to(img_embed.device) | |
| embed_joint[image_mask_joint, :] = img_embed | |
| embed_joint[video_mask_joint, :] = vid_embed | |
| deepstack_visual_embeds.append(embed_joint) | |
| elif image_mask is not None: | |
| image_mask = image_mask[..., 0] | |
| visual_pos_masks = image_mask | |
| deepstack_visual_embeds = deepstack_image_embeds | |
| elif video_mask is not None: | |
| video_mask = video_mask[..., 0] | |
| visual_pos_masks = video_mask | |
| deepstack_visual_embeds = deepstack_video_embeds | |
| if position_ids is None: | |
| attention_mask_tensor = ( | |
| attention_mask | |
| if not isinstance(attention_mask, dict) | |
| else attention_mask["full_attention"] | |
| ) | |
| if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4: | |
| attention_mask_tensor = torch.diagonal( | |
| attention_mask_tensor[:, 0], dim1=1, dim2=2 | |
| ) | |
| # Only apply conversion for floating point tensors (inverted masks) | |
| if attention_mask_tensor.dtype.is_floating_point: | |
| attention_mask_tensor = ( | |
| attention_mask_tensor | |
| / torch.finfo(attention_mask_tensor.dtype).min | |
| ) | |
| attention_mask_tensor = (1.0 - attention_mask_tensor).int() | |
| # Calculate RoPE index once per generation in the pre-fill stage only. | |
| # When compiling, we can't check tensor values thus we check only input length | |
| # It is safe to assume that `length!=1` means we're in pre-fill because compiled | |
| # models currently cannot do asssisted decoding | |
| prefill_compiled_stage = is_torchdynamo_compiling() and ( | |
| (input_ids is not None and input_ids.shape[1] != 1) | |
| or (inputs_embeds is not None and inputs_embeds.shape[1] != 1) | |
| ) | |
| prefill_noncompiled_stage = not is_torchdynamo_compiling() and ( | |
| (cache_position is not None and cache_position[0] == 0) | |
| or (past_key_values is None or past_key_values.get_seq_length() == 0) | |
| ) | |
| if ( | |
| prefill_compiled_stage or prefill_noncompiled_stage | |
| ) or self.rope_deltas is None: | |
| position_ids, rope_deltas = self.get_rope_index( | |
| input_ids, | |
| image_grid_thw, | |
| video_grid_thw, | |
| attention_mask=attention_mask_tensor, | |
| ) | |
| self.rope_deltas = rope_deltas | |
| # then use the prev pre-calculated rope-deltas to get the correct position ids | |
| else: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| delta = ( | |
| (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) | |
| if cache_position is not None | |
| else 0 | |
| ) | |
| position_ids = torch.arange(seq_length, device=inputs_embeds.device) | |
| position_ids = position_ids.view(1, -1).expand(batch_size, -1) | |
| if cache_position is not None: # otherwise `deltas` is an int `0` | |
| delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) | |
| position_ids = position_ids.add(delta) | |
| position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) | |
| outputs = self.language_model( | |
| input_ids=None, | |
| position_ids=position_ids, | |
| attention_mask=attention_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| cache_position=cache_position, | |
| visual_pos_masks=visual_pos_masks, | |
| deepstack_visual_embeds=deepstack_visual_embeds, | |
| **kwargs, | |
| ) | |
| return Qwen3VLModelOutputWithPast( | |
| last_hidden_state=outputs.last_hidden_state, | |
| past_key_values=outputs.past_key_values, | |
| rope_deltas=self.rope_deltas, | |
| ) | |
| class Qwen3VLCausalLMOutputWithPast(ModelOutput): | |
| r""" | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
| Language modeling loss (for next-token prediction). | |
| logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
| `past_key_values` input) to speed up sequential decoding. | |
| rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | |
| The rope index difference between sequence length and multimodal rope. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| logits: Optional[torch.FloatTensor] = None | |
| past_key_values: Optional[Cache] = None | |
| hidden_states: Optional[tuple[torch.FloatTensor]] = None | |
| attentions: Optional[tuple[torch.FloatTensor]] = None | |
| rope_deltas: Optional[torch.LongTensor] = None | |
| class Qwen3VLForConditionalGeneration(Qwen3VLPreTrainedModel, GenerationMixin): | |
| _checkpoint_conversion_mapping = {} | |
| _tied_weights_keys = ["lm_head.weight"] | |
| # Reference: fix gemma3 grad acc #37208 | |
| accepts_loss_kwargs = False | |
| config: Qwen3VLConfig | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = Qwen3VLModel(config) | |
| self.lm_head = nn.Linear( | |
| config.text_config.hidden_size, config.text_config.vocab_size, bias=False | |
| ) | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.get_input_embeddings() | |
| def set_input_embeddings(self, value): | |
| self.model.set_input_embeddings(value) | |
| def set_decoder(self, decoder): | |
| self.model.set_decoder(decoder) | |
| def get_decoder(self): | |
| return self.model.get_decoder() | |
| def get_video_features( | |
| self, | |
| pixel_values_videos: torch.FloatTensor, | |
| video_grid_thw: Optional[torch.LongTensor] = None, | |
| ): | |
| return self.model.get_video_features(pixel_values_videos, video_grid_thw) | |
| def get_image_features( | |
| self, | |
| pixel_values: torch.FloatTensor, | |
| image_grid_thw: Optional[torch.LongTensor] = None, | |
| ): | |
| return self.model.get_image_features(pixel_values, image_grid_thw) | |
| # Make modules available through conditional class for BC | |
| def language_model(self): | |
| return self.model.language_model | |
| def visual(self): | |
| return self.model.visual | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Cache] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| pixel_values_videos: Optional[torch.FloatTensor] = None, | |
| image_grid_thw: Optional[torch.LongTensor] = None, | |
| video_grid_thw: Optional[torch.LongTensor] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| logits_to_keep: Union[int, torch.Tensor] = 0, | |
| **kwargs: Unpack[TransformersKwargs], | |
| ) -> Union[tuple, Qwen3VLCausalLMOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
| The temporal, height and width of feature shape of each image in LLM. | |
| video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
| The temporal, height and width of feature shape of each video in LLM. | |
| """ | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| pixel_values=pixel_values, | |
| pixel_values_videos=pixel_values_videos, | |
| image_grid_thw=image_grid_thw, | |
| video_grid_thw=video_grid_thw, | |
| position_ids=position_ids, | |
| attention_mask=attention_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| cache_position=cache_position, | |
| **kwargs, | |
| ) | |
| hidden_states = outputs[0] | |
| # Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
| slice_indices = ( | |
| slice(-logits_to_keep, None) | |
| if isinstance(logits_to_keep, int) | |
| else logits_to_keep | |
| ) | |
| logits = self.lm_head(hidden_states[:, slice_indices, :]) | |
| loss = None | |
| if labels is not None: | |
| loss = self.loss_function( | |
| logits=logits, | |
| labels=labels, | |
| vocab_size=self.config.text_config.vocab_size, | |
| ) | |
| return Qwen3VLCausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| rope_deltas=outputs.rope_deltas, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past_key_values=None, | |
| attention_mask=None, | |
| inputs_embeds=None, | |
| cache_position=None, | |
| position_ids=None, | |
| use_cache=True, | |
| pixel_values=None, | |
| pixel_values_videos=None, | |
| image_grid_thw=None, | |
| video_grid_thw=None, | |
| **kwargs, | |
| ): | |
| # Overwritten -- in specific circumstances we don't want to forward image inputs to the model | |
| model_inputs = super().prepare_inputs_for_generation( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| cache_position=cache_position, | |
| position_ids=position_ids, | |
| pixel_values=pixel_values, | |
| pixel_values_videos=pixel_values_videos, | |
| image_grid_thw=image_grid_thw, | |
| video_grid_thw=video_grid_thw, | |
| use_cache=use_cache, | |
| **kwargs, | |
| ) | |
| # Qwen3VL position_ids are prepareed with rope_deltas in forward | |
| model_inputs["position_ids"] = None | |
| if cache_position[0] != 0: | |
| model_inputs["pixel_values"] = None | |
| model_inputs["pixel_values_videos"] = None | |
| return model_inputs | |
| def _get_image_nums_and_video_nums( | |
| self, | |
| input_ids: Optional[torch.LongTensor], | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| ) -> tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Get the number of images and videos for each sample to calculate the separation length of the sample tensor. | |
| These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Returns: | |
| image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) | |
| video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) | |
| """ | |
| image_token_id = self.config.image_token_id | |
| video_token_id = self.config.video_token_id | |
| vision_start_token_id = self.config.vision_start_token_id | |
| if inputs_embeds is not None: | |
| vision_start_mask = ( | |
| inputs_embeds | |
| == self.get_input_embeddings()( | |
| torch.tensor( | |
| vision_start_token_id, | |
| dtype=torch.long, | |
| device=inputs_embeds.device, | |
| ) | |
| ) | |
| )[..., 0] | |
| image_mask = ( | |
| inputs_embeds | |
| == self.get_input_embeddings()( | |
| torch.tensor( | |
| image_token_id, dtype=torch.long, device=inputs_embeds.device | |
| ) | |
| ) | |
| )[..., 0] | |
| video_mask = ( | |
| inputs_embeds | |
| == self.get_input_embeddings()( | |
| torch.tensor( | |
| video_token_id, dtype=torch.long, device=inputs_embeds.device | |
| ) | |
| ) | |
| )[..., 0] | |
| else: | |
| vision_start_mask = input_ids == vision_start_token_id | |
| image_mask = input_ids == image_token_id | |
| video_mask = input_ids == video_token_id | |
| vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) | |
| image_nums = torch.sum(vision_first_mask & image_mask, dim=1) | |
| video_nums = torch.sum(vision_first_mask & video_mask, dim=1) | |
| return image_nums, video_nums | |
| def _expand_inputs_for_generation( | |
| self, | |
| expand_size: int = 1, | |
| is_encoder_decoder: bool = False, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| **model_kwargs, | |
| ) -> tuple[torch.LongTensor, dict[str, Any]]: | |
| # Overwritten -- Support for expanding tensors without a batch size dimension | |
| # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t | |
| # pixel_values.shape[0] is sum(seqlen_images for samples) | |
| # image_grid_thw.shape[0] is sum(num_images for samples) | |
| if expand_size == 1: | |
| return input_ids, model_kwargs | |
| visual_keys = [ | |
| "pixel_values", | |
| "image_grid_thw", | |
| "pixel_values_videos", | |
| "video_grid_thw", | |
| ] | |
| def _expand_dict_for_generation_visual(dict_to_expand): | |
| image_grid_thw = model_kwargs.get("image_grid_thw", None) | |
| video_grid_thw = model_kwargs.get("video_grid_thw", None) | |
| image_nums, video_nums = self._get_image_nums_and_video_nums( | |
| input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None) | |
| ) | |
| def _repeat_interleave_samples(x, lengths, repeat_times): | |
| samples = torch.split(x, lengths) | |
| repeat_args = [repeat_times] + [1] * (x.dim() - 1) | |
| result = torch.cat( | |
| [sample.repeat(*repeat_args) for sample in samples], dim=0 | |
| ) | |
| return result | |
| for key in dict_to_expand: | |
| if key == "pixel_values": | |
| # split images into samples | |
| samples = torch.split(image_grid_thw, list(image_nums)) | |
| # compute the sequence length of images for each sample | |
| lengths = [torch.prod(sample, dim=1).sum() for sample in samples] | |
| dict_to_expand[key] = _repeat_interleave_samples( | |
| dict_to_expand[key], lengths=lengths, repeat_times=expand_size | |
| ) | |
| elif key == "image_grid_thw": | |
| # get the num of images for each sample | |
| lengths = list(image_nums) | |
| dict_to_expand[key] = _repeat_interleave_samples( | |
| dict_to_expand[key], lengths=lengths, repeat_times=expand_size | |
| ) | |
| elif key == "pixel_values_videos": | |
| samples = torch.split(video_grid_thw, list(video_nums)) | |
| lengths = [torch.prod(sample, dim=1).sum() for sample in samples] | |
| dict_to_expand[key] = _repeat_interleave_samples( | |
| dict_to_expand[key], lengths=lengths, repeat_times=expand_size | |
| ) | |
| elif key == "video_grid_thw": | |
| lengths = list(video_nums) | |
| dict_to_expand[key] = _repeat_interleave_samples( | |
| dict_to_expand[key], lengths=lengths, repeat_times=expand_size | |
| ) | |
| return dict_to_expand | |
| def _expand_dict_for_generation(dict_to_expand): | |
| for key in dict_to_expand: | |
| if ( | |
| key != "cache_position" | |
| and dict_to_expand[key] is not None | |
| and isinstance(dict_to_expand[key], torch.Tensor) | |
| and key not in visual_keys | |
| ): | |
| dict_to_expand[key] = dict_to_expand[key].repeat_interleave( | |
| expand_size, dim=0 | |
| ) | |
| return dict_to_expand | |
| model_kwargs = _expand_dict_for_generation_visual(model_kwargs) | |
| if input_ids is not None: | |
| input_ids = input_ids.repeat_interleave(expand_size, dim=0) | |
| model_kwargs = _expand_dict_for_generation(model_kwargs) | |
| if is_encoder_decoder: | |
| if model_kwargs.get("encoder_outputs") is None: | |
| raise ValueError( | |
| "If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined." | |
| ) | |
| model_kwargs["encoder_outputs"] = _expand_dict_for_generation( | |
| model_kwargs["encoder_outputs"] | |
| ) | |
| return input_ids, model_kwargs | |
| __all__ = [ | |
| "Qwen3VLVisionModel", | |
| "Qwen3VLForConditionalGeneration", | |
| "Qwen3VLModel", | |
| "Qwen3VLPreTrainedModel", | |
| "Qwen3VLTextModel", | |
| ] | |