Spaces:
Runtime error
Runtime error
Upload model weights
Browse files- .gitattributes +1 -0
- app.py +26 -0
- blocks.py +81 -0
- cvae.py +127 -0
- model_data/checkpoint +2 -0
- model_data/cvae_trained.ckpt.data-00000-of-00001 +3 -0
- model_data/cvae_trained.ckpt.index +0 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
model_data/cvae_trained.ckpt.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from cvae import get_encoder, get_decoder, CVAE
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from matplotlib import cm
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
IMAGE_SIZE = (64, 64)
|
| 9 |
+
model = CVAE(get_encoder(), get_decoder(), latent_dim=512)
|
| 10 |
+
model.load_weights("model_data/cvae_trained.ckpt")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def generate_image(mean, variance):
|
| 14 |
+
|
| 15 |
+
sample = np.random.normal(mean, variance, size=512)
|
| 16 |
+
image = tf.reshape(model.decoder(sample[tf.newaxis, :]), IMAGE_SIZE)
|
| 17 |
+
image = [Image.fromarray(np.uint8(cm.gray(image)*255))]
|
| 18 |
+
|
| 19 |
+
return image
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
title = "variational-autoencoder-faces "
|
| 23 |
+
|
| 24 |
+
gr.Interface(fn=generate_image, outputs=gr.Gallery(), inputs=[gr.inputs.Slider(default=0, label="mean", maximum=10, minimum=-10, step=.1),
|
| 25 |
+
gr.inputs.Slider(default=1, label="variance", maximum=20, minimum=0, step=.1)],
|
| 26 |
+
title=title).launch(inline=False)
|
blocks.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from typing import Any, Tuple
|
| 3 |
+
import tensorflow_addons as tfda
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class ResidualBlock(tf.keras.layers.Layer):
|
| 7 |
+
|
| 8 |
+
def __init__(self, filter_num: int, filter_size: int, seed: Any = None, name=None, padding="default",
|
| 9 |
+
instance_normalization: bool = False):
|
| 10 |
+
super(ResidualBlock, self).__init__(name=name)
|
| 11 |
+
self.filter_num = filter_num
|
| 12 |
+
self.filter_size = filter_size
|
| 13 |
+
self.seed = seed
|
| 14 |
+
self.padding_type = padding
|
| 15 |
+
|
| 16 |
+
self.activation_1 = tf.keras.layers.Activation("linear", trainable=False)
|
| 17 |
+
if padding == "default":
|
| 18 |
+
self.conv_1 = tf.keras.layers.Conv2D(filters=self.filter_num, kernel_size=self.filter_size,
|
| 19 |
+
padding="same", trainable=True)
|
| 20 |
+
elif padding == "reflect":
|
| 21 |
+
self.pad_1 = ReflectionPadding2D(padding=(1, 1))
|
| 22 |
+
self.conv_1 = tf.keras.layers.Conv2D(filters=self.filter_num, kernel_size=self.filter_size,
|
| 23 |
+
padding="valid", trainable=True)
|
| 24 |
+
else:
|
| 25 |
+
raise RuntimeError("Non valid padding type.")
|
| 26 |
+
|
| 27 |
+
self.activation_2 = tf.keras.layers.Activation("relu")
|
| 28 |
+
|
| 29 |
+
if instance_normalization:
|
| 30 |
+
self.bn_1 = tfda.layers.InstanceNormalization(trainable=True)
|
| 31 |
+
self.bn_2 = tfda.layers.InstanceNormalization(trainable=True)
|
| 32 |
+
else:
|
| 33 |
+
self.bn_1 = tf.keras.layers.BatchNormalization(trainable=True)
|
| 34 |
+
self.bn_2 = tf.keras.layers.BatchNormalization(trainable=True)
|
| 35 |
+
|
| 36 |
+
if padding == "default":
|
| 37 |
+
self.conv_2 = tf.keras.layers.Conv2D(filters=self.filter_num, kernel_size=self.filter_size,
|
| 38 |
+
padding="same", trainable=True)
|
| 39 |
+
|
| 40 |
+
elif padding == "reflect":
|
| 41 |
+
self.pad_2 = ReflectionPadding2D(padding=(1, 1))
|
| 42 |
+
self.conv_2 = tf.keras.layers.Conv2D(filters=self.filter_num, kernel_size=self.filter_size,
|
| 43 |
+
padding="valid", trainable=True)
|
| 44 |
+
else:
|
| 45 |
+
raise RuntimeError("Non valid padding type.")
|
| 46 |
+
|
| 47 |
+
self.activation_3 = tf.keras.layers.Activation("relu")
|
| 48 |
+
|
| 49 |
+
def call(self, inputs, *args, **kwargs):
|
| 50 |
+
|
| 51 |
+
identity = self.activation_1(inputs)
|
| 52 |
+
x = identity
|
| 53 |
+
if self.padding_type == "reflect":
|
| 54 |
+
x = self.pad_1(x)
|
| 55 |
+
x = self.conv_1(x)
|
| 56 |
+
x = self.activation_2(x)
|
| 57 |
+
x = self.bn_1(x)
|
| 58 |
+
if self.padding_type == "reflect":
|
| 59 |
+
x = self.pad_2(x)
|
| 60 |
+
x = self.conv_2(x)
|
| 61 |
+
x = self.bn_2(x)
|
| 62 |
+
residual = tf.keras.layers.Add()([x, identity])
|
| 63 |
+
x = self.activation_3(residual)
|
| 64 |
+
return x
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class ReflectionPadding2D(tf.keras.layers.Layer):
|
| 68 |
+
|
| 69 |
+
def __init__(self, padding: Tuple[int, int]):
|
| 70 |
+
super(ReflectionPadding2D, self).__init__()
|
| 71 |
+
self.pad_width, self.pad_height = padding
|
| 72 |
+
|
| 73 |
+
def call(self, inputs, *args, **kwargs):
|
| 74 |
+
padding_tensor = tf.constant([
|
| 75 |
+
[0, 0], # Batch
|
| 76 |
+
[self.pad_height, self.pad_height], # Height
|
| 77 |
+
[self.pad_width, self.pad_width], # Width
|
| 78 |
+
[0, 0] # Channels
|
| 79 |
+
])
|
| 80 |
+
|
| 81 |
+
return tf.pad(inputs, padding_tensor, mode="REFLECT")
|
cvae.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import keras.regularizers
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from keras.layers import InputLayer, Conv2D, Flatten, BatchNormalization, Dense, UpSampling2D, Reshape, Dropout, Add
|
| 6 |
+
import keras.backend as tfkbk
|
| 7 |
+
import numpy as np
|
| 8 |
+
from blocks import ResidualBlock
|
| 9 |
+
from keras.layers import LeakyReLU, PReLU
|
| 10 |
+
|
| 11 |
+
INPUT_SHAPE = (64, 64)
|
| 12 |
+
LATENT_DIM = 512
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_encoder():
|
| 16 |
+
encoder = tf.keras.Sequential(name="encoder")
|
| 17 |
+
|
| 18 |
+
encoder.add(InputLayer(input_shape=(*INPUT_SHAPE, 1)))
|
| 19 |
+
|
| 20 |
+
encoder.add(Conv2D(32, 3, activation=PReLU(), padding='same', kernel_initializer='he_uniform'))
|
| 21 |
+
encoder.add(Conv2D(32, 3, activation=PReLU(), padding='same', strides=2, kernel_initializer='he_uniform'))
|
| 22 |
+
encoder.add(Conv2D(64, 3, activation=PReLU(), padding='same', kernel_initializer='he_uniform'))
|
| 23 |
+
encoder.add(Conv2D(64, 3, activation=PReLU(), padding='same', strides=2, kernel_initializer='he_uniform'))
|
| 24 |
+
encoder.add(Conv2D(128, 3, activation=PReLU(), padding='same', kernel_initializer='he_uniform'))
|
| 25 |
+
encoder.add(Conv2D(128, 3, activation=PReLU(), padding='same', strides=2, kernel_initializer='he_uniform'))
|
| 26 |
+
|
| 27 |
+
encoder.add(Flatten())
|
| 28 |
+
|
| 29 |
+
encoder.add(Dense(LATENT_DIM * 2, activation=PReLU(), activity_regularizer=tf.keras.regularizers.L2(10e-6)))
|
| 30 |
+
|
| 31 |
+
return encoder
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_decoder():
|
| 35 |
+
|
| 36 |
+
inputs = tf.keras.layers.Input(shape=[LATENT_DIM, ])
|
| 37 |
+
|
| 38 |
+
x = inputs
|
| 39 |
+
x = Dense(8 * 8 * 16, activation='relu')(x)
|
| 40 |
+
x = Dense(8 * 8 * 16, activation='relu')(x)
|
| 41 |
+
x = Reshape(target_shape=(8, 8, 16))(x)
|
| 42 |
+
|
| 43 |
+
x = UpSampling2D(2)(x)
|
| 44 |
+
x = Conv2D(128, 3, activation=LeakyReLU(), padding='same', kernel_initializer='he_uniform')(x)
|
| 45 |
+
x = ResidualBlock(128, 3, seed=42, name="res1", padding="reflect")(x)
|
| 46 |
+
x = ResidualBlock(128, 3, seed=42, name="res2", padding="reflect")(x)
|
| 47 |
+
|
| 48 |
+
x = UpSampling2D(2)(x)
|
| 49 |
+
x = Conv2D(64, 3, activation=LeakyReLU(), padding='same', kernel_initializer='he_uniform')(x)
|
| 50 |
+
x = ResidualBlock(64, 3, seed=42, name="res4", padding="reflect")(x)
|
| 51 |
+
x = ResidualBlock(64, 3, seed=42, name="res5", padding="reflect")(x)
|
| 52 |
+
|
| 53 |
+
x = UpSampling2D(2)(x)
|
| 54 |
+
x = Conv2D(32, 3, activation=LeakyReLU(), padding='same', kernel_initializer='he_uniform')(x)
|
| 55 |
+
x = ResidualBlock(32, 3, seed=42, name="res7", padding="reflect")(x)
|
| 56 |
+
x = ResidualBlock(32, 3, seed=42, name="res8", padding="reflect")(x)
|
| 57 |
+
|
| 58 |
+
x = Conv2D(1, 3, padding='same', kernel_initializer='he_uniform')(x)
|
| 59 |
+
|
| 60 |
+
return tf.keras.Model(inputs=inputs, outputs=x)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class CVAE(tf.keras.Model):
|
| 64 |
+
def __init__(self, encoder: tf.keras.models.Model, decoder: tf.keras.models.Model,
|
| 65 |
+
latent_dim, kl_weight=1, loss_fun='bce', include_regularization: bool = False):
|
| 66 |
+
super(CVAE, self).__init__()
|
| 67 |
+
self.kl_weight = kl_weight
|
| 68 |
+
self.latent_dim = latent_dim
|
| 69 |
+
self.loss_fun = loss_fun
|
| 70 |
+
self.encoder = encoder
|
| 71 |
+
self.decoder = decoder
|
| 72 |
+
self.kl_loss = 0
|
| 73 |
+
self.reconstruction_loss = 0
|
| 74 |
+
self.include_regularization = include_regularization
|
| 75 |
+
|
| 76 |
+
def call(self, inputs, training=None, mask=None):
|
| 77 |
+
z_mean, z_log_var = tf.split(self.encoder(inputs), num_or_size_splits=2, axis=1)
|
| 78 |
+
z = self.sampling(z_mean, z_log_var, self.latent_dim)
|
| 79 |
+
# z_mean, z_log_var, z = self.encoder(inputs)
|
| 80 |
+
outputs = self.decoder(z)
|
| 81 |
+
|
| 82 |
+
if training:
|
| 83 |
+
regularization_loss = tf.math.reduce_sum(self.encoder.losses)
|
| 84 |
+
|
| 85 |
+
if self.loss_fun == 'elbo':
|
| 86 |
+
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=outputs, labels=inputs)
|
| 87 |
+
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
|
| 88 |
+
logpz = self.log_normal_pdf(z, 0., 0.)
|
| 89 |
+
logqz_x = self.log_normal_pdf(z, z_mean, z_log_var)
|
| 90 |
+
vae_loss = -tf.reduce_mean(logpx_z + logpz - logqz_x)
|
| 91 |
+
else:
|
| 92 |
+
kl_loss = 1 + z_log_var - tf.math.square(z_mean) - tf.math.exp(z_log_var)
|
| 93 |
+
kl_loss = tf.math.reduce_sum(kl_loss, axis=-1)
|
| 94 |
+
kl_loss *= -0.5 * self.kl_weight
|
| 95 |
+
self.kl_loss = kl_loss
|
| 96 |
+
if self.loss_fun == 'mse':
|
| 97 |
+
reconstruction_loss = tf.keras.metrics.mean_squared_error(tfkbk.flatten(inputs),
|
| 98 |
+
tfkbk.flatten(outputs))
|
| 99 |
+
elif self.loss_fun == 'bce':
|
| 100 |
+
reconstruction_loss = tf.keras.metrics.binary_crossentropy(tfkbk.flatten(inputs),
|
| 101 |
+
tfkbk.flatten(outputs))
|
| 102 |
+
else:
|
| 103 |
+
raise ValueError
|
| 104 |
+
|
| 105 |
+
reconstruction_loss *= (inputs.shape[1] * inputs.shape[1])
|
| 106 |
+
self.reconstruction_loss = reconstruction_loss
|
| 107 |
+
vae_loss = tf.math.reduce_mean(reconstruction_loss + kl_loss)
|
| 108 |
+
|
| 109 |
+
if self.include_regularization:
|
| 110 |
+
vae_loss += regularization_loss
|
| 111 |
+
|
| 112 |
+
self.add_loss(vae_loss)
|
| 113 |
+
return outputs
|
| 114 |
+
|
| 115 |
+
@staticmethod
|
| 116 |
+
def sampling(z_mean, z_log_var, latent_dim):
|
| 117 |
+
batch = tf.shape(z_mean)[0]
|
| 118 |
+
epsilon = tf.keras.backend.random_normal(shape=(batch, latent_dim))
|
| 119 |
+
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
|
| 120 |
+
|
| 121 |
+
@staticmethod
|
| 122 |
+
def log_normal_pdf(sample, mean, logvar, raxis=1):
|
| 123 |
+
log2pi = tf.math.log(2. * np.pi)
|
| 124 |
+
return tf.reduce_sum(
|
| 125 |
+
-.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi),
|
| 126 |
+
axis=raxis)
|
| 127 |
+
|
model_data/checkpoint
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_checkpoint_path: "cvae_trained.ckpt"
|
| 2 |
+
all_model_checkpoint_paths: "cvae_trained.ckpt"
|
model_data/cvae_trained.ckpt.data-00000-of-00001
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a38425718ad0bb40c171e698c686e9956340f3f3711751df0ab199a36bcdd8a5
|
| 3 |
+
size 137170643
|
model_data/cvae_trained.ckpt.index
ADDED
|
Binary file (19.1 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow~=2.10.0
|
| 2 |
+
tensorflow_addons
|
| 3 |
+
gradio~=3.17.1
|
| 4 |
+
numpy~=1.21.6
|
| 5 |
+
Pillow~=8.4.0
|
| 6 |
+
keras~=2.10.0
|