Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,29 +19,28 @@ hub = {
|
|
| 19 |
"HF_API_TOKEN": os.environ.get("HUGGINGFACE_API_TOKEN")
|
| 20 |
}
|
| 21 |
|
| 22 |
-
# Global state
|
| 23 |
vector_db = None
|
| 24 |
qa_chain = None
|
| 25 |
-
chat_memory = None
|
| 26 |
|
| 27 |
-
#
|
| 28 |
def transcribe_and_setup(audio_file_path):
|
| 29 |
global vector_db, qa_chain, chat_memory
|
| 30 |
|
| 31 |
if audio_file_path is None:
|
| 32 |
-
return "No audio uploaded.",
|
| 33 |
|
| 34 |
-
# Transcribe with Whisper
|
| 35 |
result = model.transcribe(audio_file_path)
|
| 36 |
transcript = result["text"]
|
| 37 |
|
| 38 |
-
# Split and embed
|
| 39 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
| 40 |
splits = text_splitter.create_documents([transcript])
|
| 41 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 42 |
vector_db = FAISS.from_documents(splits, embeddings)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
chat_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 46 |
retriever = vector_db.as_retriever()
|
| 47 |
llm = HuggingFaceEndpoint(
|
|
@@ -53,24 +52,39 @@ def transcribe_and_setup(audio_file_path):
|
|
| 53 |
)
|
| 54 |
qa_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=chat_memory)
|
| 55 |
|
| 56 |
-
return "Transcription complete! Ready for questions.",
|
| 57 |
|
| 58 |
-
#
|
| 59 |
def answer_question(question, chat_history):
|
| 60 |
global qa_chain, chat_memory
|
| 61 |
if qa_chain is None:
|
| 62 |
return "Please upload and process an audio file first.", chat_history
|
| 63 |
|
| 64 |
-
response = qa_chain.invoke({
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
# Gradio
|
| 73 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=
|
| 74 |
gr.Markdown("## ποΈ **Conversational Audio Chatbot**")
|
| 75 |
gr.Markdown("Upload an audio file, let the AI process it, and ask any questions!")
|
| 76 |
|
|
@@ -80,20 +94,20 @@ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display:none !important;}")
|
|
| 80 |
transcribe_button = gr.Button("π Process Audio")
|
| 81 |
status_output = gr.Textbox(label="π οΈ Status", interactive=False)
|
| 82 |
with gr.Column(scale=2):
|
| 83 |
-
chatbot = gr.Chatbot(label="π¬ Chat with your audio",
|
| 84 |
question_input = gr.Textbox(label="Type your question", placeholder="Ask about the audio...")
|
| 85 |
ask_button = gr.Button("π‘ Ask")
|
| 86 |
|
| 87 |
transcribe_button.click(
|
| 88 |
fn=transcribe_and_setup,
|
| 89 |
inputs=audio_input,
|
| 90 |
-
outputs=[status_output, chatbot]
|
| 91 |
)
|
| 92 |
|
| 93 |
ask_button.click(
|
| 94 |
fn=answer_question,
|
| 95 |
inputs=[question_input, chatbot],
|
| 96 |
-
outputs=[question_input, chatbot]
|
| 97 |
)
|
| 98 |
|
| 99 |
-
demo.launch()
|
|
|
|
| 19 |
"HF_API_TOKEN": os.environ.get("HUGGINGFACE_API_TOKEN")
|
| 20 |
}
|
| 21 |
|
| 22 |
+
# Global state
|
| 23 |
vector_db = None
|
| 24 |
qa_chain = None
|
| 25 |
+
chat_memory = None
|
| 26 |
|
| 27 |
+
# Transcribe and set up RAG
|
| 28 |
def transcribe_and_setup(audio_file_path):
|
| 29 |
global vector_db, qa_chain, chat_memory
|
| 30 |
|
| 31 |
if audio_file_path is None:
|
| 32 |
+
return "No audio uploaded.", []
|
| 33 |
|
|
|
|
| 34 |
result = model.transcribe(audio_file_path)
|
| 35 |
transcript = result["text"]
|
| 36 |
|
| 37 |
+
# Split and embed
|
| 38 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
| 39 |
splits = text_splitter.create_documents([transcript])
|
| 40 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 41 |
vector_db = FAISS.from_documents(splits, embeddings)
|
| 42 |
|
| 43 |
+
# QA setup
|
| 44 |
chat_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 45 |
retriever = vector_db.as_retriever()
|
| 46 |
llm = HuggingFaceEndpoint(
|
|
|
|
| 52 |
)
|
| 53 |
qa_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=chat_memory)
|
| 54 |
|
| 55 |
+
return "Transcription complete! Ready for questions.", [] # Empty chat reset
|
| 56 |
|
| 57 |
+
# Handle conversation
|
| 58 |
def answer_question(question, chat_history):
|
| 59 |
global qa_chain, chat_memory
|
| 60 |
if qa_chain is None:
|
| 61 |
return "Please upload and process an audio file first.", chat_history
|
| 62 |
|
| 63 |
+
response = qa_chain.invoke({
|
| 64 |
+
"question": question,
|
| 65 |
+
"chat_history": chat_memory.load_memory_variables({})["chat_history"]
|
| 66 |
+
})
|
| 67 |
+
|
| 68 |
+
# Just show back-and-forth messages
|
| 69 |
+
chat_history.append([question, response["answer"]])
|
| 70 |
+
return "", chat_history
|
| 71 |
+
|
| 72 |
+
# Custom CSS
|
| 73 |
+
custom_css = """
|
| 74 |
+
.chatbox .message.user, .chatbox .message.bot {
|
| 75 |
+
background-color: #1e3d2f !important;
|
| 76 |
+
color: #ffffff !important;
|
| 77 |
+
border-radius: 10px !important;
|
| 78 |
+
padding: 10px !important;
|
| 79 |
+
margin: 5px !important;
|
| 80 |
+
}
|
| 81 |
+
.chatbox .message.user::before, .chatbox .message.bot::before {
|
| 82 |
+
content: none !important;
|
| 83 |
+
}
|
| 84 |
+
"""
|
| 85 |
|
| 86 |
+
# Gradio app
|
| 87 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 88 |
gr.Markdown("## ποΈ **Conversational Audio Chatbot**")
|
| 89 |
gr.Markdown("Upload an audio file, let the AI process it, and ask any questions!")
|
| 90 |
|
|
|
|
| 94 |
transcribe_button = gr.Button("π Process Audio")
|
| 95 |
status_output = gr.Textbox(label="π οΈ Status", interactive=False)
|
| 96 |
with gr.Column(scale=2):
|
| 97 |
+
chatbot = gr.Chatbot(label="π¬ Chat with your audio", elem_classes=["chatbox"])
|
| 98 |
question_input = gr.Textbox(label="Type your question", placeholder="Ask about the audio...")
|
| 99 |
ask_button = gr.Button("π‘ Ask")
|
| 100 |
|
| 101 |
transcribe_button.click(
|
| 102 |
fn=transcribe_and_setup,
|
| 103 |
inputs=audio_input,
|
| 104 |
+
outputs=[status_output, chatbot]
|
| 105 |
)
|
| 106 |
|
| 107 |
ask_button.click(
|
| 108 |
fn=answer_question,
|
| 109 |
inputs=[question_input, chatbot],
|
| 110 |
+
outputs=[question_input, chatbot]
|
| 111 |
)
|
| 112 |
|
| 113 |
+
demo.launch()
|