Hongin Kim commited on
Commit
cf69e7a
·
1 Parent(s): f634d75

Initial model release

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,321 @@
1
  ---
2
  license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - snuh/mvl-rrg-1.0
7
+ tags:
8
+ - radiology report generation
9
+ - medical vision
10
+ - clinical
11
+ - benchmark
12
+ - healthcare
13
+ ---
14
+
15
+ 🧠 **Temporal & Multi-CXR Chest X-ray Report Generation Model by HARI and MVL of Seoul National University Hospital**
16
+
17
+ Welcome to the official repository of the **Temporal & Multi-CXR Chest X-ray Report Generation Model** developed by the **Healthcare AI Research Institute (HARI)** and **Medical Vision Lab(MVL)** at **Seoul National University Hospital (SNUH)**.
18
+
19
+ This model generates chest X-ray (CXR) reports and is designed to leverage not only single-image inputs, but also **multi-view CXRs (PA/AP/Lateral) and temporal pairs (current + prior)**. When available, it can additionally incorporate textual clinical context such as prior reports, indication, and time interval.
20
+
21
+ It is trained with instruction data tailored to different input configurations (current only / current + prior / current + prior + prior report), and applies **report style constraints (structure, sentence count, temporal expressions, etc.) to reduce linguistic variation and encourage the model to focus more on clinically meaningful findings and temporal changes.**
22
+
23
+
24
+ ## 🚀 Model Overview
25
+
26
+ * **Model Name**: `snuh/mvl-rrg-1.0`
27
+ * **Architecture**: Large Multimodal Model (LMM)
28
+ * **Fine-tuning Objective**: Radiology report generation
29
+ * **Primary Language**: English
30
+ * **Domain**: Chest X-ray
31
+ * **Performance**: Achieves state-of-the-art performance on standard report generation benchmarks
32
+ * **Key Applications**:
33
+ * Multi-view CXR inputs (PA/AP/Lateral)
34
+ * Temporal pairs CXR inputs (current + prior)
35
+ * Style-controlled report generation to reduce linguistic variance
36
+
37
+
38
+ ## 📊 Training Data & Benchmark
39
+
40
+ This model was fine-tuned using a curated corpus of medical report generation data derived from **publicly available, de-identified sources**, including **MIMIC-CXR** and **MIMIC-CXR reports**. The training data focuses on radiology report generation from chest X-ray images.
41
+
42
+ * **Training Data Characteristics**:
43
+ - Focused on generating radiology reports from chest X-ray images.
44
+ - Utilizes chest X-ray images and corresponding radiology reports from the MIMIC-CXR dataset.
45
+ - Incorporates longitudinal imaging data with two or more time points, enabling the model to understand sequential changes in patient conditions.
46
+ - Designed to reflect realistic radiological interpretation and documentation workflows.
47
+ - The current dataset consists of 80,136 training samples and 665 test samples, ensuring robust model training and evaluation.
48
+ - Samples in which the radiology report referenced a prior examination but no corresponding prior data could be mapped were excluded from the dataset.
49
+
50
+ ### Evaluation Scope and Benchmark Results
51
+
52
+ The reported benchmark results focus on **current-only report generation**, where each report is generated using a single, self-contained imaging context without explicit temporal inputs.
53
+
54
+ In medical imaging, this setting differs fundamentally from **temporal (longitudinal) report generation**, which requires reasoning over disease progression, treatment response, or follow-up changes. Temporal information can substantially alter clinical interpretation, even when surface-level imaging findings appear similar.
55
+
56
+ Accordingly, we distinguish between the following evaluation regimes:
57
+
58
+ - **Current-only evaluation**
59
+ Single-image, single-context report generation.
60
+ All reported benchmark results are based on this setting.
61
+ | Model | ROUGE-L | BLEU-1 | BLEU-4 | RadGraph F1 | RadCliQ (↓) |
62
+ |:------------|--------:|-------:|-------:|------------:|------------:|
63
+ | Libra | 25.6 | 33.0 | 9.1 | 24.5 | 0.92 |
64
+ | MAIRA-2 | 29.9 | 44.7 | 14.9 | 34.7 | 1.27 |
65
+ | mvl-rrg-1.0 | 34.1 | 44.6 | 18.6 | 34.9 | 1.23 |
66
+
67
+ - **Temporal evaluation (ongoing)**
68
+ Time-aware report generation that incorporates prior imaging studies and longitudinal clinical changes.
69
+ | Model | Temporal RadGraph F1 |
70
+ |:------------|---------------------:|
71
+ | Libra | 54.8 |
72
+ | MAIRA-2 | 52.5 |
73
+ | mvl-rrg-1.0 | 79.9 |
74
+
75
+ > ⚠️ These benchmarks are provided for research purposes only and do not imply clinical safety or efficacy.
76
+
77
+
78
+ ## 🔐 Privacy & Ethical Compliance
79
+
80
+ We strictly adhere to ethical AI development and privacy protection:
81
+
82
+ * ✅ The model was trained exclusively on **publicly available and de-identified data**.
83
+ * 🔒 It does **not include any real patient data or personally identifiable information (PII)**.
84
+ * ⚖️ Designed for **safe, responsible, and research-oriented** use in healthcare AI.
85
+
86
+ > ⚠️ This model is intended for **research and educational purposes only** and should **not** be used to make clinical decisions.
87
+
88
+
89
+ ## 🏥 About HARI and MVL of Seoul National University Hospital
90
+ HARI – Healthcare AI Research Institute
91
+ The **Healthcare AI Research Institute (HARI)** is a pioneering research group within **Seoul National University Hospital**, driving innovation in medical AI.
92
+
93
+ MVL - Medical Vison Lab
94
+ The **Medical Vison Lab (MVL)** is a pioneering research group within **Seoul National University Hospital**, driving innovation in medical AI.
95
+
96
+ * To develop AI technology-based applications that will aid doctors in fast and accurate diagnostic decisions helping patients have a comfortable life and eventually improve their life quality.
97
+
98
+ ### 🌍 Vision & Mission
99
+
100
+ * **Vision**: Shaping a sustainable and healthy future through pioneering AI research.
101
+ * **Mission**:
102
+ * Develop clinically useful, trustworthy AI technologies.
103
+ * Foster cross-disciplinary collaboration in medicine and AI.
104
+ * Lead global healthcare AI commercialization and policy frameworks.
105
+ * Educate the next generation of AI-powered medical professionals.
106
+
107
+
108
+ ## 🤝 Collaborate with Us
109
+
110
+ We welcome collaboration with:
111
+
112
+ * AI research institutions and medical universities
113
+ * Healthcare startups and technology partners
114
+ * Policymakers shaping AI regulation in medicine
115
+
116
+ * HARI
117
+ 📧 **Contact**: [hhoon@snu.ac.kr](mailto:hhoon@snu.ac.kr)
118
+ 🌐 **Website**: [Seoul National University Hospital](https://www.snuh.org/)
119
+
120
+
121
+ * MVL
122
+ 📧 **Contact**: [yg@snuh.org](mailto:yg@snuh.org)
123
+ 🌐 **Website**: [Medical Vison Lab](https://sites.google.com/view/MedicalVisionLab)
124
+
125
+
126
+ ## 🤗 Model Usage Example
127
+
128
+ ```python
129
+ from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
130
+ import torch
131
+ from pathlib import Path
132
+ import os
133
+ from PIL import Image
134
+
135
+ # Load processor and model
136
+ model_name = "Qwen3VL_SNUH"
137
+
138
+ model = Qwen3VLForConditionalGeneration.from_pretrained(
139
+ model_name,
140
+ torch_dtype=torch.bfloat16,
141
+ device_map="auto"
142
+ )
143
+ processor = AutoProcessor.from_pretrained(model_name)
144
+
145
+ # Image paths
146
+ current_frontal_image_path = "/**/current_frontal_image.png"
147
+ current_lateral_image_path = "/**/current_lateral_image.png"
148
+ prior_frontal_image_path = "/**/prior_frontal_image.png"
149
+
150
+ # Validate image paths exist
151
+ if current_frontal_image_path and not Path(current_frontal_image_path).exists():
152
+ raise FileNotFoundError(f"Current frontal image file not found: {current_frontal_image_path}")
153
+ if current_lateral_image_path and not Path(current_lateral_image_path).exists():
154
+ raise FileNotFoundError(f"Current lateral image file not found: {current_lateral_image_path}")
155
+ if prior_frontal_image_path and not Path(prior_frontal_image_path).exists():
156
+ raise FileNotFoundError(f"Prior frontal image file not found: {prior_frontal_image_path}")
157
+
158
+ # Clinical context
159
+ prior_findings = "N/A"
160
+ prior_impression = "Developed pleural effusion, both\nInterval increased nodular opacity at LMLF"
161
+ indication = "F with chest pain // ?pna"
162
+ technique = "CHEST (PA AND LAT)"
163
+ comparison = "__."
164
+ time_interval = "1 month"
165
+
166
+ # Style attributes
167
+ findings_structure_type = "narrative_paragraph"
168
+ findings_temporal_comparison = "absent"
169
+ findings_sentence_count = 6
170
+ impression_structure_type = "narrative_paragraph"
171
+ impression_temporal_comparison = "absent"
172
+ impression_sentence_count = 1
173
+
174
+ # Instruction
175
+ inputs_list = ["- Current frontal image: <image>"]
176
+ if current_lateral_image_path:
177
+ inputs_list.append("- Current lateral image: <image>")
178
+ else:
179
+ inputs_list.append("- Current lateral image: N/A")
180
+ if prior_frontal_image_path:
181
+ inputs_list.append("- Prior frontal image: <image>")
182
+ else:
183
+ inputs_list.append("- Prior frontal image: N/A")
184
+ inputs_list.extend([
185
+ f"- Prior findings: {prior_findings}",
186
+ f"- Prior impression: {prior_impression}"
187
+ ])
188
+ inputs_text = "\n".join(inputs_list)
189
+
190
+ instruction = f"""You are an expert radiology assistant for chest X-ray (CXR) interpretation.
191
+
192
+ Inputs:
193
+ {inputs_text}
194
+
195
+ Clinical context:
196
+ - INDICATION: {indication}
197
+ - TECHNIQUE: {technique}
198
+ - COMPARISON: {comparison}
199
+ - TIME INTERVAL: {time_interval}
200
+ (Time elapsed between the prior study date and the current study date)
201
+
202
+ Instructions:
203
+ 1. Generate a chest X-ray report based on the current study.
204
+ 2. Write a Findings section describing radiographic observations using standard clinical language.
205
+ 3. Write an Impression section summarizing the key findings or overall assessment.
206
+ 4. When applicable, include conditions related to CheXbert classes
207
+ (e.g., cardiomegaly, lung opacity, pleural effusion, pneumothorax, pneumonia,
208
+ support devices, or no acute abnormality).
209
+ 5. If no significant abnormality is present, clearly state this.
210
+ 6. Follow the provided style attributes exactly, applying them independently
211
+ to the Findings and Impression sections:
212
+ - Structure type controls the organizational pattern of the text.
213
+ - Temporal comparison controls whether and how prior studies are referenced.
214
+ - Sentence count controls the amount of text (small / medium / large).
215
+
216
+ Output format:
217
+ Return only a single JSON object with the following fields:
218
+
219
+ {{
220
+ "findings": "<free-text radiology findings>",
221
+ "impression": "<free-text radiology impression>"
222
+ }}
223
+
224
+ Style attributes:
225
+ - findings_structure_type: {findings_structure_type}
226
+ - findings_temporal_comparison: {findings_temporal_comparison}
227
+ - findings_sentence_count: {findings_sentence_count}
228
+ - impression_structure_type: {impression_structure_type}
229
+ - impression_temporal_comparison: {impression_temporal_comparison}
230
+ - impression_sentence_count: {impression_sentence_count}"""
231
+
232
+ content = []
233
+
234
+ # Current frontal image (always required)
235
+ current_frontal_image = Image.open(current_frontal_image_path)
236
+ content.append({
237
+ "type": "images",
238
+ "image": current_frontal_image,
239
+ })
240
+
241
+ # Current lateral image (optional)
242
+ if current_lateral_image_path:
243
+ current_lateral_image = Image.open(current_lateral_image_path)
244
+ content.append({
245
+ "type": "images",
246
+ "image": current_lateral_image,
247
+ })
248
+
249
+ # Prior frontal image (optional)
250
+ if prior_frontal_image_path:
251
+ prior_frontal_image = Image.open(prior_frontal_image_path)
252
+ content.append({
253
+ "type": "images",
254
+ "image": prior_frontal_image,
255
+ })
256
+
257
+ # Instruction
258
+ content.append({
259
+ "type": "text",
260
+ "text": instruction,
261
+ })
262
+
263
+ messages = [
264
+ {
265
+ "role": "user",
266
+ "content": content,
267
+ }
268
+ ]
269
+
270
+ inputs = processor.apply_chat_template(
271
+ messages,
272
+ tokenize=True,
273
+ add_generation_prompt=True,
274
+ return_tensors="pt",
275
+ return_dict=True,
276
+ )
277
+
278
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
279
+
280
+ with torch.no_grad():
281
+ generated_ids = model.generate(
282
+ **inputs,
283
+ max_new_tokens=512
284
+ )
285
+
286
+ prompt_len = inputs["input_ids"].shape[-1]
287
+ generated_ids_trimmed = generated_ids[:, prompt_len:]
288
+
289
+ response = processor.batch_decode(
290
+ generated_ids_trimmed,
291
+ skip_special_tokens=True,
292
+ clean_up_tokenization_spaces=False,
293
+ )[0]
294
+
295
+ #result
296
+ print(response)
297
+ ````
298
+
299
+
300
+ ## 📄 License
301
+
302
+ **Apache 2.0 License** – Free for research and commercial use with attribution.
303
+
304
+
305
+ ## 📢 Citation
306
+
307
+ If you use this model in your work, please cite:
308
+
309
+ ```
310
+ @misc{mvl-rrg-1.0,
311
+ title = {mvl-rrg-1.0},
312
+ url = {https://huggingface.co/snuh/mvl-rrg-1.0},
313
+ author = {Healthcare AI Research Institute(HARI) and Medical Vison Lab (MVL) of Seoul National University Hospital(SNUH)},
314
+ month = {January},
315
+ year = {2026}
316
+ }
317
+ ```
318
+
319
+
320
+ ## 🚀 Together, we are shaping the future of AI-driven healthcare.
321
+
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {%- if messages[0].content is string %}
5
+ {{- messages[0].content }}
6
+ {%- else %}
7
+ {%- for content in messages[0].content %}
8
+ {%- if 'text' in content %}
9
+ {{- content.text }}
10
+ {%- endif %}
11
+ {%- endfor %}
12
+ {%- endif %}
13
+ {{- '\n\n' }}
14
+ {%- endif %}
15
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
16
+ {%- for tool in tools %}
17
+ {{- "\n" }}
18
+ {{- tool | tojson }}
19
+ {%- endfor %}
20
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
21
+ {%- else %}
22
+ {%- if messages[0].role == 'system' %}
23
+ {{- '<|im_start|>system\n' }}
24
+ {%- if messages[0].content is string %}
25
+ {{- messages[0].content }}
26
+ {%- else %}
27
+ {%- for content in messages[0].content %}
28
+ {%- if 'text' in content %}
29
+ {{- content.text }}
30
+ {%- endif %}
31
+ {%- endfor %}
32
+ {%- endif %}
33
+ {{- '<|im_end|>\n' }}
34
+ {%- endif %}
35
+ {%- endif %}
36
+ {%- set image_count = namespace(value=0) %}
37
+ {%- set video_count = namespace(value=0) %}
38
+ {%- for message in messages %}
39
+ {%- if message.role == "user" %}
40
+ {{- '<|im_start|>' + message.role + '\n' }}
41
+ {%- if message.content is string %}
42
+ {{- message.content }}
43
+ {%- else %}
44
+ {%- for content in message.content %}
45
+ {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
46
+ {%- set image_count.value = image_count.value + 1 %}
47
+ {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
48
+ <|vision_start|><|image_pad|><|vision_end|>
49
+ {%- elif content.type == 'video' or 'video' in content %}
50
+ {%- set video_count.value = video_count.value + 1 %}
51
+ {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
52
+ <|vision_start|><|video_pad|><|vision_end|>
53
+ {%- elif 'text' in content %}
54
+ {{- content.text }}
55
+ {%- endif %}
56
+ {%- endfor %}
57
+ {%- endif %}
58
+ {{- '<|im_end|>\n' }}
59
+ {%- elif message.role == "assistant" %}
60
+ {{- '<|im_start|>' + message.role + '\n' }}
61
+ {%- if message.content is string %}
62
+ {{- message.content }}
63
+ {%- else %}
64
+ {%- for content_item in message.content %}
65
+ {%- if 'text' in content_item %}
66
+ {{- content_item.text }}
67
+ {%- endif %}
68
+ {%- endfor %}
69
+ {%- endif %}
70
+ {%- if message.tool_calls %}
71
+ {%- for tool_call in message.tool_calls %}
72
+ {%- if (loop.first and message.content) or (not loop.first) %}
73
+ {{- '\n' }}
74
+ {%- endif %}
75
+ {%- if tool_call.function %}
76
+ {%- set tool_call = tool_call.function %}
77
+ {%- endif %}
78
+ {{- '<tool_call>\n{"name": "' }}
79
+ {{- tool_call.name }}
80
+ {{- '", "arguments": ' }}
81
+ {%- if tool_call.arguments is string %}
82
+ {{- tool_call.arguments }}
83
+ {%- else %}
84
+ {{- tool_call.arguments | tojson }}
85
+ {%- endif %}
86
+ {{- '}\n</tool_call>' }}
87
+ {%- endfor %}
88
+ {%- endif %}
89
+ {{- '<|im_end|>\n' }}
90
+ {%- elif message.role == "tool" %}
91
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
92
+ {{- '<|im_start|>user' }}
93
+ {%- endif %}
94
+ {{- '\n<tool_response>\n' }}
95
+ {%- if message.content is string %}
96
+ {{- message.content }}
97
+ {%- else %}
98
+ {%- for content in message.content %}
99
+ {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
100
+ {%- set image_count.value = image_count.value + 1 %}
101
+ {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
102
+ <|vision_start|><|image_pad|><|vision_end|>
103
+ {%- elif content.type == 'video' or 'video' in content %}
104
+ {%- set video_count.value = video_count.value + 1 %}
105
+ {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
106
+ <|vision_start|><|video_pad|><|vision_end|>
107
+ {%- elif 'text' in content %}
108
+ {{- content.text }}
109
+ {%- endif %}
110
+ {%- endfor %}
111
+ {%- endif %}
112
+ {{- '\n</tool_response>' }}
113
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
114
+ {{- '<|im_end|>\n' }}
115
+ {%- endif %}
116
+ {%- endif %}
117
+ {%- endfor %}
118
+ {%- if add_generation_prompt %}
119
+ {{- '<|im_start|>assistant\n' }}
120
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3VLForConditionalGeneration"
4
+ ],
5
+ "dtype": "bfloat16",
6
+ "eos_token_id": 151645,
7
+ "hidden_size": 4096,
8
+ "image_token_id": 151655,
9
+ "model_type": "qwen3_vl",
10
+ "pad_token_id": 151643,
11
+ "text_config": {
12
+ "attention_bias": false,
13
+ "attention_dropout": 0.0,
14
+ "bos_token_id": 151643,
15
+ "dtype": "float32",
16
+ "eos_token_id": 151645,
17
+ "head_dim": 128,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 4096,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 12288,
22
+ "max_position_embeddings": 262144,
23
+ "model_type": "qwen3_vl_text",
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 36,
26
+ "num_key_value_heads": 8,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": {
29
+ "mrope_interleaved": true,
30
+ "mrope_section": [
31
+ 24,
32
+ 20,
33
+ 20
34
+ ],
35
+ "rope_type": "default"
36
+ },
37
+ "rope_theta": 5000000,
38
+ "use_cache": false,
39
+ "vocab_size": 151936
40
+ },
41
+ "tie_word_embeddings": false,
42
+ "transformers_version": "4.57.1",
43
+ "use_cache": false,
44
+ "video_token_id": 151656,
45
+ "vision_config": {
46
+ "deepstack_visual_indexes": [
47
+ 8,
48
+ 16,
49
+ 24
50
+ ],
51
+ "depth": 27,
52
+ "dtype": "float32",
53
+ "hidden_act": "gelu_pytorch_tanh",
54
+ "hidden_size": 1152,
55
+ "in_channels": 3,
56
+ "initializer_range": 0.02,
57
+ "intermediate_size": 4304,
58
+ "model_type": "qwen3_vl",
59
+ "num_heads": 16,
60
+ "num_position_embeddings": 2304,
61
+ "out_hidden_size": 4096,
62
+ "patch_size": 16,
63
+ "spatial_merge_size": 2,
64
+ "temporal_patch_size": 2
65
+ },
66
+ "vision_end_token_id": 151653,
67
+ "vision_start_token_id": 151652
68
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "eos_token_id": [
4
+ 151645,
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.7,
10
+ "top_k": 20,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.57.1"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f838d6e87b53cb190fd13db92a0dc0b78ec67e49a51d2abd5379628669d3c19
3
+ size 4998056552
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:876ac66da678f1af52707a62f29d748e449ebe19039cab7bef91bc6be4582e59
3
+ size 4915962464
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c984e340f021c2039c618eaa99ef3c3055af8d701a3c05de5239876530f0bb9
3
+ size 4915962496
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0ce918660f7b32e0dc6ae02d7958b60e53d85ceaa50e781be41a8dea48fd89a
3
+ size 2704357976
model.safetensors.index.json ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 770288,
4
+ "total_size": 17534247392
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.language_model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.language_model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.language_model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.language_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.language_model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.language_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.language_model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
15
+ "model.language_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.language_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.language_model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
18
+ "model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.language_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.language_model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.language_model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.language_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.language_model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.language_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.language_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
26
+ "model.language_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.language_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.language_model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
29
+ "model.language_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.language_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.language_model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.language_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.language_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.language_model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.language_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.language_model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
37
+ "model.language_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.language_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.language_model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
40
+ "model.language_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.language_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.language_model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
43
+ "model.language_model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.language_model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.language_model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.language_model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "model.language_model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
48
+ "model.language_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.language_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.language_model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
51
+ "model.language_model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.language_model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.language_model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.language_model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.language_model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.language_model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.language_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.language_model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
59
+ "model.language_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.language_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.language_model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
62
+ "model.language_model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.language_model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.language_model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.language_model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.language_model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.language_model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.language_model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.language_model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
70
+ "model.language_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.language_model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.language_model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
73
+ "model.language_model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.language_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.language_model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.language_model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.language_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.language_model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.language_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
80
+ "model.language_model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
81
+ "model.language_model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.language_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.language_model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
84
+ "model.language_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.language_model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.language_model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.language_model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.language_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.language_model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.language_model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.language_model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
92
+ "model.language_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.language_model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.language_model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
95
+ "model.language_model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.language_model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.language_model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.language_model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.language_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.language_model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.language_model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
102
+ "model.language_model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
103
+ "model.language_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.language_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.language_model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
106
+ "model.language_model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.language_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.language_model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.language_model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.language_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.language_model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.language_model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.language_model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
114
+ "model.language_model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.language_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.language_model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
117
+ "model.language_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.language_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.language_model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
120
+ "model.language_model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.language_model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.language_model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.language_model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
124
+ "model.language_model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
125
+ "model.language_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.language_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.language_model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
128
+ "model.language_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.language_model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.language_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "model.language_model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.language_model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.language_model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.language_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.language_model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
136
+ "model.language_model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.language_model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.language_model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
139
+ "model.language_model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.language_model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.language_model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
142
+ "model.language_model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.language_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.language_model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
145
+ "model.language_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
146
+ "model.language_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
147
+ "model.language_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.language_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.language_model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
150
+ "model.language_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.language_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
152
+ "model.language_model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.language_model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.language_model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.language_model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.language_model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.language_model.layers.20.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
158
+ "model.language_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.language_model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.language_model.layers.20.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
161
+ "model.language_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.language_model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.language_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
164
+ "model.language_model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.language_model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.language_model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.language_model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
168
+ "model.language_model.layers.21.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
169
+ "model.language_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.language_model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.language_model.layers.21.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
172
+ "model.language_model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.language_model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.language_model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.language_model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.language_model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.language_model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.language_model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
179
+ "model.language_model.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
180
+ "model.language_model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.language_model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.language_model.layers.22.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
183
+ "model.language_model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.language_model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.language_model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
186
+ "model.language_model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.language_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.language_model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.language_model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.language_model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
191
+ "model.language_model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.language_model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.language_model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
194
+ "model.language_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.language_model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.language_model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
197
+ "model.language_model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.language_model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.language_model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.language_model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.language_model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
202
+ "model.language_model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.language_model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.language_model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
205
+ "model.language_model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.language_model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.language_model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.language_model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.language_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.language_model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.language_model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.language_model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
213
+ "model.language_model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.language_model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.language_model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
216
+ "model.language_model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.language_model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
218
+ "model.language_model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
219
+ "model.language_model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.language_model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.language_model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.language_model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
223
+ "model.language_model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
224
+ "model.language_model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.language_model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.language_model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
227
+ "model.language_model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.language_model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.language_model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.language_model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.language_model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.language_model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.language_model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.language_model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
235
+ "model.language_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.language_model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.language_model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
238
+ "model.language_model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.language_model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.language_model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.language_model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.language_model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.language_model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.language_model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
245
+ "model.language_model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
246
+ "model.language_model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.language_model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.language_model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
249
+ "model.language_model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.language_model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.language_model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.language_model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.language_model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.language_model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.language_model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.language_model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
257
+ "model.language_model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.language_model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.language_model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
260
+ "model.language_model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.language_model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.language_model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
263
+ "model.language_model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.language_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.language_model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.language_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
267
+ "model.language_model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
268
+ "model.language_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.language_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.language_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
271
+ "model.language_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.language_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.language_model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.language_model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.language_model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.language_model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.language_model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
278
+ "model.language_model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
279
+ "model.language_model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.language_model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.language_model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
282
+ "model.language_model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.language_model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.language_model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
285
+ "model.language_model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.language_model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.language_model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.language_model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
289
+ "model.language_model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
290
+ "model.language_model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.language_model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.language_model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
293
+ "model.language_model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.language_model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.language_model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
296
+ "model.language_model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
297
+ "model.language_model.layers.32.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
298
+ "model.language_model.layers.32.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
299
+ "model.language_model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
300
+ "model.language_model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
301
+ "model.language_model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.language_model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.language_model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
304
+ "model.language_model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.language_model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.language_model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
307
+ "model.language_model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
308
+ "model.language_model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
309
+ "model.language_model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
310
+ "model.language_model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
311
+ "model.language_model.layers.33.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
312
+ "model.language_model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
313
+ "model.language_model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
314
+ "model.language_model.layers.33.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
315
+ "model.language_model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
316
+ "model.language_model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
317
+ "model.language_model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
318
+ "model.language_model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
319
+ "model.language_model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
320
+ "model.language_model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
321
+ "model.language_model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
322
+ "model.language_model.layers.34.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
323
+ "model.language_model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
324
+ "model.language_model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
325
+ "model.language_model.layers.34.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
326
+ "model.language_model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
327
+ "model.language_model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
328
+ "model.language_model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
329
+ "model.language_model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.language_model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.language_model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
332
+ "model.language_model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
333
+ "model.language_model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
334
+ "model.language_model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.language_model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
336
+ "model.language_model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
337
+ "model.language_model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
338
+ "model.language_model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
339
+ "model.language_model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
340
+ "model.language_model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.language_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.language_model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.language_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
344
+ "model.language_model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
345
+ "model.language_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.language_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.language_model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
348
+ "model.language_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.language_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
350
+ "model.language_model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
351
+ "model.language_model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.language_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.language_model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.language_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
355
+ "model.language_model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
356
+ "model.language_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.language_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
358
+ "model.language_model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
359
+ "model.language_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.language_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
361
+ "model.language_model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
362
+ "model.language_model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
363
+ "model.language_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.language_model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.language_model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
366
+ "model.language_model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
367
+ "model.language_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.language_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.language_model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
370
+ "model.language_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.language_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.language_model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
373
+ "model.language_model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
374
+ "model.language_model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
375
+ "model.language_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
376
+ "model.language_model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
377
+ "model.language_model.layers.7.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
378
+ "model.language_model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
379
+ "model.language_model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
380
+ "model.language_model.layers.7.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
381
+ "model.language_model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
382
+ "model.language_model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
383
+ "model.language_model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
384
+ "model.language_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
385
+ "model.language_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
386
+ "model.language_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
387
+ "model.language_model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
388
+ "model.language_model.layers.8.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
389
+ "model.language_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.language_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
391
+ "model.language_model.layers.8.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
392
+ "model.language_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
393
+ "model.language_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
394
+ "model.language_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
395
+ "model.language_model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
396
+ "model.language_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.language_model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
398
+ "model.language_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
399
+ "model.language_model.layers.9.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
400
+ "model.language_model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
401
+ "model.language_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
402
+ "model.language_model.layers.9.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
403
+ "model.language_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
404
+ "model.language_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
405
+ "model.language_model.norm.weight": "model-00004-of-00004.safetensors",
406
+ "model.visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
407
+ "model.visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
409
+ "model.visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
410
+ "model.visual.blocks.0.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
411
+ "model.visual.blocks.0.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
412
+ "model.visual.blocks.0.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
413
+ "model.visual.blocks.0.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
414
+ "model.visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
415
+ "model.visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
416
+ "model.visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
417
+ "model.visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
418
+ "model.visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
419
+ "model.visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
420
+ "model.visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
421
+ "model.visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
422
+ "model.visual.blocks.1.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
423
+ "model.visual.blocks.1.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
424
+ "model.visual.blocks.1.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
425
+ "model.visual.blocks.1.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
426
+ "model.visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
427
+ "model.visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
428
+ "model.visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
429
+ "model.visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
430
+ "model.visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
431
+ "model.visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
432
+ "model.visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
433
+ "model.visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
434
+ "model.visual.blocks.10.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
435
+ "model.visual.blocks.10.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
436
+ "model.visual.blocks.10.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
437
+ "model.visual.blocks.10.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
438
+ "model.visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
439
+ "model.visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
440
+ "model.visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
441
+ "model.visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
442
+ "model.visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
443
+ "model.visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
444
+ "model.visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
445
+ "model.visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
446
+ "model.visual.blocks.11.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
447
+ "model.visual.blocks.11.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
448
+ "model.visual.blocks.11.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
449
+ "model.visual.blocks.11.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
450
+ "model.visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
451
+ "model.visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
452
+ "model.visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
453
+ "model.visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
454
+ "model.visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
455
+ "model.visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
456
+ "model.visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
457
+ "model.visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
458
+ "model.visual.blocks.12.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
459
+ "model.visual.blocks.12.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
460
+ "model.visual.blocks.12.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
461
+ "model.visual.blocks.12.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
462
+ "model.visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
463
+ "model.visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
464
+ "model.visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
465
+ "model.visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
466
+ "model.visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
467
+ "model.visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
468
+ "model.visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
469
+ "model.visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
470
+ "model.visual.blocks.13.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
471
+ "model.visual.blocks.13.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
472
+ "model.visual.blocks.13.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
473
+ "model.visual.blocks.13.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
474
+ "model.visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
475
+ "model.visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
476
+ "model.visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
477
+ "model.visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
478
+ "model.visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
479
+ "model.visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
480
+ "model.visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
481
+ "model.visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
482
+ "model.visual.blocks.14.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
483
+ "model.visual.blocks.14.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
484
+ "model.visual.blocks.14.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
485
+ "model.visual.blocks.14.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
486
+ "model.visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
487
+ "model.visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
488
+ "model.visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
489
+ "model.visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
490
+ "model.visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
491
+ "model.visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
492
+ "model.visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
493
+ "model.visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
494
+ "model.visual.blocks.15.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
495
+ "model.visual.blocks.15.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
496
+ "model.visual.blocks.15.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
497
+ "model.visual.blocks.15.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
498
+ "model.visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
499
+ "model.visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
500
+ "model.visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
501
+ "model.visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
502
+ "model.visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
503
+ "model.visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
504
+ "model.visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
505
+ "model.visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
506
+ "model.visual.blocks.16.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
507
+ "model.visual.blocks.16.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
508
+ "model.visual.blocks.16.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
509
+ "model.visual.blocks.16.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
510
+ "model.visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
511
+ "model.visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
512
+ "model.visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
513
+ "model.visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
514
+ "model.visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
515
+ "model.visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
516
+ "model.visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
517
+ "model.visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
518
+ "model.visual.blocks.17.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
519
+ "model.visual.blocks.17.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
520
+ "model.visual.blocks.17.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
521
+ "model.visual.blocks.17.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
522
+ "model.visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
523
+ "model.visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
524
+ "model.visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
525
+ "model.visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
526
+ "model.visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
527
+ "model.visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
528
+ "model.visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
529
+ "model.visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
530
+ "model.visual.blocks.18.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
531
+ "model.visual.blocks.18.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
532
+ "model.visual.blocks.18.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
533
+ "model.visual.blocks.18.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
534
+ "model.visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
535
+ "model.visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
536
+ "model.visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
537
+ "model.visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
538
+ "model.visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
539
+ "model.visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
540
+ "model.visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
541
+ "model.visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
542
+ "model.visual.blocks.19.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
543
+ "model.visual.blocks.19.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
544
+ "model.visual.blocks.19.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
545
+ "model.visual.blocks.19.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
546
+ "model.visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
547
+ "model.visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
548
+ "model.visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
549
+ "model.visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
550
+ "model.visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
551
+ "model.visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
552
+ "model.visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
553
+ "model.visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
554
+ "model.visual.blocks.2.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
555
+ "model.visual.blocks.2.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
556
+ "model.visual.blocks.2.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
557
+ "model.visual.blocks.2.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
558
+ "model.visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
559
+ "model.visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
560
+ "model.visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
561
+ "model.visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
562
+ "model.visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
563
+ "model.visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
564
+ "model.visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
565
+ "model.visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
566
+ "model.visual.blocks.20.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
567
+ "model.visual.blocks.20.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
568
+ "model.visual.blocks.20.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
569
+ "model.visual.blocks.20.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
570
+ "model.visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
571
+ "model.visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
572
+ "model.visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
573
+ "model.visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
574
+ "model.visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
575
+ "model.visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
576
+ "model.visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
577
+ "model.visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
578
+ "model.visual.blocks.21.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
579
+ "model.visual.blocks.21.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
580
+ "model.visual.blocks.21.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
581
+ "model.visual.blocks.21.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
582
+ "model.visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
583
+ "model.visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
584
+ "model.visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
585
+ "model.visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
586
+ "model.visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
587
+ "model.visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
588
+ "model.visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
589
+ "model.visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
590
+ "model.visual.blocks.22.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
591
+ "model.visual.blocks.22.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
592
+ "model.visual.blocks.22.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
593
+ "model.visual.blocks.22.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
594
+ "model.visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
595
+ "model.visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
596
+ "model.visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
597
+ "model.visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
598
+ "model.visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
599
+ "model.visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
600
+ "model.visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
601
+ "model.visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
602
+ "model.visual.blocks.23.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
603
+ "model.visual.blocks.23.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
604
+ "model.visual.blocks.23.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
605
+ "model.visual.blocks.23.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
606
+ "model.visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
607
+ "model.visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
608
+ "model.visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
609
+ "model.visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
610
+ "model.visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
611
+ "model.visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
612
+ "model.visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
613
+ "model.visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
614
+ "model.visual.blocks.24.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
615
+ "model.visual.blocks.24.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
616
+ "model.visual.blocks.24.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
617
+ "model.visual.blocks.24.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
618
+ "model.visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
619
+ "model.visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
620
+ "model.visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
621
+ "model.visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
622
+ "model.visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
623
+ "model.visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
624
+ "model.visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
625
+ "model.visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
626
+ "model.visual.blocks.25.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
627
+ "model.visual.blocks.25.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
628
+ "model.visual.blocks.25.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
629
+ "model.visual.blocks.25.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
630
+ "model.visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
631
+ "model.visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
632
+ "model.visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
633
+ "model.visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
634
+ "model.visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
635
+ "model.visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
636
+ "model.visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
637
+ "model.visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
638
+ "model.visual.blocks.26.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
639
+ "model.visual.blocks.26.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
640
+ "model.visual.blocks.26.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
641
+ "model.visual.blocks.26.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
642
+ "model.visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
643
+ "model.visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
644
+ "model.visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
645
+ "model.visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
646
+ "model.visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
647
+ "model.visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
648
+ "model.visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
649
+ "model.visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
650
+ "model.visual.blocks.3.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
651
+ "model.visual.blocks.3.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
652
+ "model.visual.blocks.3.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
653
+ "model.visual.blocks.3.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
654
+ "model.visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
655
+ "model.visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
656
+ "model.visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
657
+ "model.visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
658
+ "model.visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
659
+ "model.visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
660
+ "model.visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
661
+ "model.visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
662
+ "model.visual.blocks.4.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
663
+ "model.visual.blocks.4.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
664
+ "model.visual.blocks.4.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
665
+ "model.visual.blocks.4.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
666
+ "model.visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
667
+ "model.visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
668
+ "model.visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
669
+ "model.visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
670
+ "model.visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
671
+ "model.visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
672
+ "model.visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
673
+ "model.visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
674
+ "model.visual.blocks.5.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
675
+ "model.visual.blocks.5.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
676
+ "model.visual.blocks.5.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
677
+ "model.visual.blocks.5.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
678
+ "model.visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
679
+ "model.visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
680
+ "model.visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
681
+ "model.visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
682
+ "model.visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
683
+ "model.visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
684
+ "model.visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
685
+ "model.visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
686
+ "model.visual.blocks.6.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
687
+ "model.visual.blocks.6.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
688
+ "model.visual.blocks.6.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
689
+ "model.visual.blocks.6.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
690
+ "model.visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
691
+ "model.visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
692
+ "model.visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
693
+ "model.visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
694
+ "model.visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
695
+ "model.visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
696
+ "model.visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
697
+ "model.visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
698
+ "model.visual.blocks.7.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
699
+ "model.visual.blocks.7.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
700
+ "model.visual.blocks.7.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
701
+ "model.visual.blocks.7.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
702
+ "model.visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
703
+ "model.visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
704
+ "model.visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
705
+ "model.visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
706
+ "model.visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
707
+ "model.visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
708
+ "model.visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
709
+ "model.visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
710
+ "model.visual.blocks.8.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
711
+ "model.visual.blocks.8.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
712
+ "model.visual.blocks.8.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
713
+ "model.visual.blocks.8.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
714
+ "model.visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
715
+ "model.visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
716
+ "model.visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
717
+ "model.visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
718
+ "model.visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
719
+ "model.visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
720
+ "model.visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
721
+ "model.visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
722
+ "model.visual.blocks.9.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
723
+ "model.visual.blocks.9.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
724
+ "model.visual.blocks.9.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
725
+ "model.visual.blocks.9.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
726
+ "model.visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
727
+ "model.visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
728
+ "model.visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
729
+ "model.visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
730
+ "model.visual.deepstack_merger_list.0.linear_fc1.bias": "model-00001-of-00004.safetensors",
731
+ "model.visual.deepstack_merger_list.0.linear_fc1.weight": "model-00001-of-00004.safetensors",
732
+ "model.visual.deepstack_merger_list.0.linear_fc2.bias": "model-00001-of-00004.safetensors",
733
+ "model.visual.deepstack_merger_list.0.linear_fc2.weight": "model-00001-of-00004.safetensors",
734
+ "model.visual.deepstack_merger_list.0.norm.bias": "model-00001-of-00004.safetensors",
735
+ "model.visual.deepstack_merger_list.0.norm.weight": "model-00001-of-00004.safetensors",
736
+ "model.visual.deepstack_merger_list.1.linear_fc1.bias": "model-00001-of-00004.safetensors",
737
+ "model.visual.deepstack_merger_list.1.linear_fc1.weight": "model-00001-of-00004.safetensors",
738
+ "model.visual.deepstack_merger_list.1.linear_fc2.bias": "model-00001-of-00004.safetensors",
739
+ "model.visual.deepstack_merger_list.1.linear_fc2.weight": "model-00001-of-00004.safetensors",
740
+ "model.visual.deepstack_merger_list.1.norm.bias": "model-00001-of-00004.safetensors",
741
+ "model.visual.deepstack_merger_list.1.norm.weight": "model-00001-of-00004.safetensors",
742
+ "model.visual.deepstack_merger_list.2.linear_fc1.bias": "model-00001-of-00004.safetensors",
743
+ "model.visual.deepstack_merger_list.2.linear_fc1.weight": "model-00001-of-00004.safetensors",
744
+ "model.visual.deepstack_merger_list.2.linear_fc2.bias": "model-00001-of-00004.safetensors",
745
+ "model.visual.deepstack_merger_list.2.linear_fc2.weight": "model-00001-of-00004.safetensors",
746
+ "model.visual.deepstack_merger_list.2.norm.bias": "model-00001-of-00004.safetensors",
747
+ "model.visual.deepstack_merger_list.2.norm.weight": "model-00001-of-00004.safetensors",
748
+ "model.visual.merger.linear_fc1.bias": "model-00001-of-00004.safetensors",
749
+ "model.visual.merger.linear_fc1.weight": "model-00001-of-00004.safetensors",
750
+ "model.visual.merger.linear_fc2.bias": "model-00001-of-00004.safetensors",
751
+ "model.visual.merger.linear_fc2.weight": "model-00001-of-00004.safetensors",
752
+ "model.visual.merger.norm.bias": "model-00001-of-00004.safetensors",
753
+ "model.visual.merger.norm.weight": "model-00001-of-00004.safetensors",
754
+ "model.visual.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
755
+ "model.visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
756
+ "model.visual.pos_embed.weight": "model-00001-of-00004.safetensors"
757
+ }
758
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "disable_grouping": null,
7
+ "do_center_crop": null,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_pad": null,
11
+ "do_rescale": true,
12
+ "do_resize": true,
13
+ "image_mean": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "image_processor_type": "Qwen2VLImageProcessorFast",
19
+ "image_std": [
20
+ 0.5,
21
+ 0.5,
22
+ 0.5
23
+ ],
24
+ "input_data_format": null,
25
+ "max_pixels": null,
26
+ "merge_size": 2,
27
+ "min_pixels": null,
28
+ "pad_size": null,
29
+ "patch_size": 16,
30
+ "processor_class": "Qwen3VLProcessor",
31
+ "resample": 3,
32
+ "rescale_factor": 0.00392156862745098,
33
+ "return_tensors": null,
34
+ "size": {
35
+ "longest_edge": 1048576,
36
+ "shortest_edge": 65536
37
+ },
38
+ "temporal_patch_size": 2
39
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
test_sampled_test_current_only_v3.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 262144,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "processor_class": "Qwen3VLProcessor",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
trainer_state.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.6103143118706134,
6
+ "eval_steps": 500,
7
+ "global_step": 4000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.07628928898382667,
14
+ "grad_norm": 0.5989449513220185,
15
+ "learning_rate": 9.91963546413407e-07,
16
+ "loss": 0.0011,
17
+ "step": 500
18
+ },
19
+ {
20
+ "epoch": 0.15257857796765334,
21
+ "grad_norm": 2.2494316516142128,
22
+ "learning_rate": 9.556986186241005e-07,
23
+ "loss": 0.0025,
24
+ "step": 1000
25
+ },
26
+ {
27
+ "epoch": 0.22886786695148,
28
+ "grad_norm": 1.3834491105845461,
29
+ "learning_rate": 8.923061414833051e-07,
30
+ "loss": 0.0026,
31
+ "step": 1500
32
+ },
33
+ {
34
+ "epoch": 0.3051571559353067,
35
+ "grad_norm": 0.746887091616834,
36
+ "learning_rate": 8.055598428055626e-07,
37
+ "loss": 0.0027,
38
+ "step": 2000
39
+ },
40
+ {
41
+ "epoch": 0.3814464449191334,
42
+ "grad_norm": 0.51240860954977,
43
+ "learning_rate": 7.006236936942846e-07,
44
+ "loss": 0.0027,
45
+ "step": 2500
46
+ },
47
+ {
48
+ "epoch": 0.45773573390296,
49
+ "grad_norm": 1.607427242816828,
50
+ "learning_rate": 5.837444994884173e-07,
51
+ "loss": 0.0024,
52
+ "step": 3000
53
+ },
54
+ {
55
+ "epoch": 0.5340250228867867,
56
+ "grad_norm": 0.69004695816096,
57
+ "learning_rate": 4.618800300371542e-07,
58
+ "loss": 0.0019,
59
+ "step": 3500
60
+ },
61
+ {
62
+ "epoch": 0.6103143118706134,
63
+ "grad_norm": 0.2966374379750323,
64
+ "learning_rate": 3.4228482655287307e-07,
65
+ "loss": 0.0016,
66
+ "step": 4000
67
+ }
68
+ ],
69
+ "logging_steps": 500,
70
+ "max_steps": 6554,
71
+ "num_input_tokens_seen": 0,
72
+ "num_train_epochs": 1,
73
+ "save_steps": 1000,
74
+ "stateful_callbacks": {
75
+ "TrainerControl": {
76
+ "args": {
77
+ "should_epoch_stop": false,
78
+ "should_evaluate": false,
79
+ "should_log": false,
80
+ "should_save": true,
81
+ "should_training_stop": false
82
+ },
83
+ "attributes": {}
84
+ }
85
+ },
86
+ "total_flos": 1906049107886080.0,
87
+ "train_batch_size": 4,
88
+ "trial_name": null,
89
+ "trial_params": null
90
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": null,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "do_sample_frames": true,
12
+ "fps": 2,
13
+ "image_mean": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "image_std": [
19
+ 0.5,
20
+ 0.5,
21
+ 0.5
22
+ ],
23
+ "input_data_format": null,
24
+ "max_frames": 768,
25
+ "merge_size": 2,
26
+ "min_frames": 4,
27
+ "num_frames": null,
28
+ "pad_size": null,
29
+ "patch_size": 16,
30
+ "processor_class": "Qwen3VLProcessor",
31
+ "resample": 3,
32
+ "rescale_factor": 0.00392156862745098,
33
+ "return_metadata": false,
34
+ "size": {
35
+ "longest_edge": 1048576,
36
+ "shortest_edge": 4096
37
+ },
38
+ "temporal_patch_size": 2,
39
+ "video_metadata": null,
40
+ "video_processor_type": "Qwen3VLVideoProcessor"
41
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff