--- license: apache-2.0 --- # Hi, I’m Seniru Epasinghe šŸ‘‹ I’m an AI undergraduate and an AI enthusiast, working on machine learning projects and open-source contributions. I enjoy exploring AI pipelines, natural language processing, and building tools that make development easier. --- ## 🌐 Connect with me [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-seniruk-orange?logo=huggingface&logoColor=white)](https://huggingface.co/seniruk)    [![Medium](https://img.shields.io/badge/Medium-seniruk_epasinghe-black?logo=medium&logoColor=white)](https://medium.com/@senirukepasinghe)    [![LinkedIn](https://img.shields.io/badge/LinkedIn-seniru_epasinghe-blue?logo=linkedin&logoColor=white)](https://www.linkedin.com/in/seniru-epasinghe-b34b86232/)    [![GitHub](https://img.shields.io/badge/GitHub-seth2k2-181717?logo=github&logoColor=white)](https://github.com/seth2k2) # Purpose Used for generating high quality commit messages for a given git difference ### Model Description Generated by fine tuning Qwen2.5-Coder-1.5B-Instruct on bigcode/commitpackft dataset for 2 epochs Trained on a total of 277 Languages Achieved a final training loss in the range of 1- 1.7 (due to data set not containing equal data rows for each language) For common languages(python, java ,javascripts,c etc) loss went for a minimum of 1.0335 ## Environmental Impact - **Hardware Type:** geforce RTX 4060 TI - 16GB] - **Hours used:** 10 Hours - **Cloud Provider:** local ### Results ![Logo](./image1.png) ![Logo](./image2.png) ### Inference ```python from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="seniruk/commitGen-gguf", filename="commitGen.gguf", ) diff="" #the git difference instruction= "" #the instruction --> 'create a commit message for given git difference' prompt = "{}{}".format(instruction,diff) messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] output = llm.create_chat_completion( messages=messages, temperature=0.5 ) llm_message = output['choices'][0]['message']['content'] print(llm_message) ```