- Weight-Inherited Distillation for Task-Agnostic BERT Compression Knowledge Distillation (KD) is a predominant approach for BERT compression. Previous KD-based methods focus on designing extra alignment losses for the student model to mimic the behavior of the teacher model. These methods transfer the knowledge in an indirect way. In this paper, we propose a novel Weight-Inherited Distillation (WID), which directly transfers knowledge from the teacher. WID does not require any additional alignment loss and trains a compact student by inheriting the weights, showing a new perspective of knowledge distillation. Specifically, we design the row compactors and column compactors as mappings and then compress the weights via structural re-parameterization. Experimental results on the GLUE and SQuAD benchmarks show that WID outperforms previous state-of-the-art KD-based baselines. Further analysis indicates that WID can also learn the attention patterns from the teacher model without any alignment loss on attention distributions. The code is available at https://github.com/wutaiqiang/WID-NAACL2024. 7 authors · May 15, 2023
1 Compacter: Efficient Low-Rank Hypercomplex Adapter Layers Adapting large-scale pretrained language models to downstream tasks via fine-tuning is the standard method for achieving state-of-the-art performance on NLP benchmarks. However, fine-tuning all weights of models with millions or billions of parameters is sample-inefficient, unstable in low-resource settings, and wasteful as it requires storing a separate copy of the model for each task. Recent work has developed parameter-efficient fine-tuning methods, but these approaches either still require a relatively large number of parameters or underperform standard fine-tuning. In this work, we propose Compacter, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work. Compacter accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers. Specifically, Compacter inserts task-specific weight matrices into a pretrained model's weights, which are computed efficiently as a sum of Kronecker products between shared "slow" weights and "fast" rank-one matrices defined per Compacter layer. By only training 0.047% of a pretrained model's parameters, Compacter performs on par with standard fine-tuning on GLUE and outperforms standard fine-tuning on SuperGLUE and low-resource settings. Our code is publicly available at~https://github.com/rabeehk/compacter. 3 authors · Jun 8, 2021
1 Compactor: Calibrated Query-Agnostic KV Cache Compression with Approximate Leverage Scores Modern Large Language Models (LLMs) are increasingly trained to support very large context windows. We present Compactor, a training-free, query-agnostic KV compression strategy that uses approximate leverage scores to determine token importance. We show that Compactor can achieve the same performance as competing methods while retaining 20% fewer tokens in both synthetic and real-world context tasks, while being more task-robust. We further introduce a procedure for context-calibrated compression: inferring the maximum compression a given context supports before significant performance loss. Using context-calibrated compression, we show that Compactor achieves full KV performance on Longbench while reducing the KV memory burden by 68%, on average. To demonstrate the efficacy and generalizability of our approach, we apply Compactor to 27 synthetic and real-world tasks from RULER and Longbench, with models from both the Qwen 2.5 and Llama 3.1 families. Finally, we release compactor-vllm, an inference engine and suite of optimized Triton kernels designed to efficiently support the sparse, non-contiguous memory access patterns inherent to compressed KV caches. This work demonstrates that Compactor offers a practical, high-performance solution for alleviating the memory bottleneck in modern LLM deployment. 2 authors · Jul 10, 2025