Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnhancing Safety and Robustness of Vision-Based Controllers via Reachability Analysis
Autonomous systems, such as self-driving cars and drones, have made significant strides in recent years by leveraging visual inputs and machine learning for decision-making and control. Despite their impressive performance, these vision-based controllers can make erroneous predictions when faced with novel or out-of-distribution inputs. Such errors can cascade into catastrophic system failures and compromise system safety. In this work, we compute Neural Reachable Tubes, which act as parameterized approximations of Backward Reachable Tubes to stress-test the vision-based controllers and mine their failure modes. The identified failures are then used to enhance the system safety through both offline and online methods. The online approach involves training a classifier as a run-time failure monitor to detect closed-loop, system-level failures, subsequently triggering a fallback controller that robustly handles these detected failures to preserve system safety. For the offline approach, we improve the original controller via incremental training using a carefully augmented failure dataset, resulting in a more robust controller that is resistant to the known failure modes. In either approach, the system is safeguarded against shortcomings that transcend the vision-based controller and pertain to the closed-loop safety of the overall system. We validate the proposed approaches on an autonomous aircraft taxiing task that involves using a vision-based controller to guide the aircraft towards the centerline of the runway. Our results show the efficacy of the proposed algorithms in identifying and handling system-level failures, outperforming methods that rely on controller prediction error or uncertainty quantification for identifying system failures.
Variational Intrinsic Control
In this paper we introduce a new unsupervised reinforcement learning method for discovering the set of intrinsic options available to an agent. This set is learned by maximizing the number of different states an agent can reliably reach, as measured by the mutual information between the set of options and option termination states. To this end, we instantiate two policy gradient based algorithms, one that creates an explicit embedding space of options and one that represents options implicitly. The algorithms also provide an explicit measure of empowerment in a given state that can be used by an empowerment maximizing agent. The algorithm scales well with function approximation and we demonstrate the applicability of the algorithm on a range of tasks.
Thought of Search: Planning with Language Models Through The Lens of Efficiency
Among the most important properties of algorithms investigated in computer science are soundness, completeness, and complexity. These properties, however, are rarely analyzed for the vast collection of recently proposed methods for planning with large language models. In this work, we alleviate this gap. We analyse these properties of using LLMs for planning and highlight that recent trends abandon both soundness and completeness for the sake of inefficiency. We propose a significantly more efficient approach that can, at the same time, maintain both soundness and completeness. We exemplify on four representative search problems, comparing to the LLM-based solutions from the literature that attempt to solve these problems. We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100\% accuracy with only a few calls to the LLM. We argue for a responsible use of compute resources; urging research community to investigate sound and complete LLM-based approaches that uphold efficiency.
ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models
In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.
Improved Sample Complexity for Incremental Autonomous Exploration in MDPs
We investigate the exploration of an unknown environment when no reward function is provided. Building on the incremental exploration setting introduced by Lim and Auer [1], we define the objective of learning the set of ε-optimal goal-conditioned policies attaining all states that are incrementally reachable within L steps (in expectation) from a reference state s_0. In this paper, we introduce a novel model-based approach that interleaves discovering new states from s_0 and improving the accuracy of a model estimate that is used to compute goal-conditioned policies to reach newly discovered states. The resulting algorithm, DisCo, achieves a sample complexity scaling as O(L^5 S_{L+ε} Γ_{L+ε} A ε^{-2}), where A is the number of actions, S_{L+ε} is the number of states that are incrementally reachable from s_0 in L+ε steps, and Γ_{L+ε} is the branching factor of the dynamics over such states. This improves over the algorithm proposed in [1] in both ε and L at the cost of an extra Γ_{L+ε} factor, which is small in most environments of interest. Furthermore, DisCo is the first algorithm that can return an ε/c_{min}-optimal policy for any cost-sensitive shortest-path problem defined on the L-reachable states with minimum cost c_{min}. Finally, we report preliminary empirical results confirming our theoretical findings.
What's the Magic Word? A Control Theory of LLM Prompting
Prompt engineering is crucial for deploying LLMs but is poorly understood mathematically. We formalize LLM systems as a class of discrete stochastic dynamical systems to explore prompt engineering through the lens of control theory. We investigate the reachable set of output token sequences R_y(mathbf x_0) for which there exists a control input sequence mathbf u for each mathbf y in R_y(mathbf x_0) that steers the LLM to output mathbf y from initial state sequence mathbf x_0. We offer analytic analysis on the limitations on the controllability of self-attention in terms of reachable set, where we prove an upper bound on the reachable set of outputs R_y(mathbf x_0) as a function of the singular values of the parameter matrices. We present complementary empirical analysis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs R_y(mathbf x_0) w.r.t. initial state sequences mathbf x_0 sampled from the Wikitext dataset. We find that the correct next Wikitext token following sequence mathbf x_0 is reachable over 97% of the time with prompts of kleq 10 tokens. We also establish that the top 75 most likely next tokens, as estimated by the LLM itself, are reachable at least 85% of the time with prompts of kleq 10 tokens. Intriguingly, short prompt sequences can dramatically alter the likelihood of specific outputs, even making the least likely tokens become the most likely ones. This control-centric analysis of LLMs demonstrates the significant and poorly understood role of input sequences in steering output probabilities, offering a foundational perspective for enhancing language model system capabilities.
Learning Density Distribution of Reachable States for Autonomous Systems
State density distribution, in contrast to worst-case reachability, can be leveraged for safety-related problems to better quantify the likelihood of the risk for potentially hazardous situations. In this work, we propose a data-driven method to compute the density distribution of reachable states for nonlinear and even black-box systems. Our semi-supervised approach learns system dynamics and the state density jointly from trajectory data, guided by the fact that the state density evolution follows the Liouville partial differential equation. With the help of neural network reachability tools, our approach can estimate the set of all possible future states as well as their density. Moreover, we could perform online safety verification with probability ranges for unsafe behaviors to occur. We use an extensive set of experiments to show that our learned solution can produce a much more accurate estimate on density distribution, and can quantify risks less conservatively and flexibly comparing with worst-case analysis.
Parameterized covering in semi-ladder-free hypergraphs
In this article, we study the parameterized complexity of the Set Cover problem restricted to semi-ladder-free hypergraphs, a class defined by Fabianski et al. [Proceedings of STACS 2019]. We observe that two algorithms introduced by Langerman and Morin [Discrete & Computational Geometry 2005] in the context of geometric covering problems can be adapted to this setting, yielding simple FPT and kernelization algorithms for Set Cover in semi-ladder-free hypergraphs. We complement our algorithmic results with a compression lower bound for the problem, which proves the tightness of our kernelization under standard complexity-theoretic assumptions.
A rewriting-logic-with-SMT-based formal analysis and parameter synthesis framework for parametric time Petri nets
This paper presents a concrete and a symbolic rewriting logic semantics for parametric time Petri nets with inhibitor arcs (PITPNs), a flexible model of timed systems where parameters are allowed in firing bounds. We prove that our semantics is bisimilar to the "standard" semantics of PITPNs. This allows us to use the rewriting logic tool Maude, combined with SMT solving, to provide sound and complete formal analyses for PITPNs. We develop and implement a new general folding approach for symbolic reachability, so that Maude-with-SMT reachability analysis terminates whenever the parametric state-class graph of the PITPN is finite. Our work opens up the possibility of using the many formal analysis capabilities of Maude -- including full LTL model checking, analysis with user-defined analysis strategies, and even statistical model checking -- for such nets. We illustrate this by explaining how almost all formal analysis and parameter synthesis methods supported by the state-of-the-art PITPN tool Romeo can be performed using Maude with SMT. In addition, we also support analysis and parameter synthesis from parametric initial markings, as well as full LTL model checking and analysis with user-defined execution strategies. Experiments show that our methods outperform Romeo in many cases.
Layered State Discovery for Incremental Autonomous Exploration
We study the autonomous exploration (AX) problem proposed by Lim & Auer (2012). In this setting, the objective is to discover a set of epsilon-optimal policies reaching a set S_L^{rightarrow} of incrementally L-controllable states. We introduce a novel layered decomposition of the set of incrementally L-controllable states that is based on the iterative application of a state-expansion operator. We leverage these results to design Layered Autonomous Exploration (LAE), a novel algorithm for AX that attains a sample complexity of mathcal{O}(LS^{rightarrow}_{L(1+epsilon)}Gamma_{L(1+epsilon)} A ln^{12}(S^{rightarrow}_{L(1+epsilon)})/epsilon^2), where S^{rightarrow}_{L(1+epsilon)} is the number of states that are incrementally L(1+epsilon)-controllable, A is the number of actions, and Gamma_{L(1+epsilon)} is the branching factor of the transitions over such states. LAE improves over the algorithm of Tarbouriech et al. (2020a) by a factor of L^2 and it is the first algorithm for AX that works in a countably-infinite state space. Moreover, we show that, under a certain identifiability assumption, LAE achieves minimax-optimal sample complexity of mathcal{O}(LS^{rightarrow}_{L}Aln^{12}(S^{rightarrow}_{L})/epsilon^2), outperforming existing algorithms and matching for the first time the lower bound proved by Cai et al. (2022) up to logarithmic factors.
Goal Space Abstraction in Hierarchical Reinforcement Learning via Set-Based Reachability Analysis
Open-ended learning benefits immensely from the use of symbolic methods for goal representation as they offer ways to structure knowledge for efficient and transferable learning. However, the existing Hierarchical Reinforcement Learning (HRL) approaches relying on symbolic reasoning are often limited as they require a manual goal representation. The challenge in autonomously discovering a symbolic goal representation is that it must preserve critical information, such as the environment dynamics. In this paper, we propose a developmental mechanism for goal discovery via an emergent representation that abstracts (i.e., groups together) sets of environment states that have similar roles in the task. We introduce a Feudal HRL algorithm that concurrently learns both the goal representation and a hierarchical policy. The algorithm uses symbolic reachability analysis for neural networks to approximate the transition relation among sets of states and to refine the goal representation. We evaluate our approach on complex navigation tasks, showing the learned representation is interpretable, transferrable and results in data efficient learning.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
Representation Learning with Multi-Step Inverse Kinematics: An Efficient and Optimal Approach to Rich-Observation RL
We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the learner's own action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis leverages several new techniques tailored to non-optimistic exploration algorithms, which we anticipate will find broader use.
Algorithms for Caching and MTS with reduced number of predictions
ML-augmented algorithms utilize predictions to achieve performance beyond their worst-case bounds. Producing these predictions might be a costly operation -- this motivated Im et al. '22 to introduce the study of algorithms which use predictions parsimoniously. We design parsimonious algorithms for caching and MTS with action predictions, proposed by Antoniadis et al. '20, focusing on the parameters of consistency (performance with perfect predictions) and smoothness (dependence of their performance on the prediction error). Our algorithm for caching is 1-consistent, robust, and its smoothness deteriorates with the decreasing number of available predictions. We propose an algorithm for general MTS whose consistency and smoothness both scale linearly with the decreasing number of predictions. Without the restriction on the number of available predictions, both algorithms match the earlier guarantees achieved by Antoniadis et al. '20.
PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability
Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.
A Categorical Framework for Learning Generalised Tree Automata
Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors.
PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
Updating Robot Safety Representations Online from Natural Language Feedback
Robots must operate safely when deployed in novel and human-centered environments, like homes. Current safe control approaches typically assume that the safety constraints are known a priori, and thus, the robot can pre-compute a corresponding safety controller. While this may make sense for some safety constraints (e.g., avoiding collision with walls by analyzing a floor plan), other constraints are more complex (e.g., spills), inherently personal, context-dependent, and can only be identified at deployment time when the robot is interacting in a specific environment and with a specific person (e.g., fragile objects, expensive rugs). Here, language provides a flexible mechanism to communicate these evolving safety constraints to the robot. In this work, we use vision language models (VLMs) to interpret language feedback and the robot's image observations to continuously update the robot's representation of safety constraints. With these inferred constraints, we update a Hamilton-Jacobi reachability safety controller online via efficient warm-starting techniques. Through simulation and hardware experiments, we demonstrate the robot's ability to infer and respect language-based safety constraints with the proposed approach.
Spatio-Temporal Lattice Planning Using Optimal Motion Primitives
Lattice-based planning techniques simplify the motion planning problem for autonomous vehicles by limiting available motions to a pre-computed set of primitives. These primitives are then combined online to generate more complex maneuvers. A set of motion primitives t-span a lattice if, given a real number t at least 1, any configuration in the lattice can be reached via a sequence of motion primitives whose cost is no more than a factor of t from optimal. Computing a minimal t-spanning set balances a trade-off between computed motion quality and motion planning performance. In this work, we formulate this problem for an arbitrary lattice as a mixed integer linear program. We also propose an A*-based algorithm to solve the motion planning problem using these primitives. Finally, we present an algorithm that removes the excessive oscillations from planned motions -- a common problem in lattice-based planning. Our method is validated for autonomous driving in both parking lot and highway scenarios.
GridRoute: A Benchmark for LLM-Based Route Planning with Cardinal Movement in Grid Environments
Recent advancements in Large Language Models (LLMs) have demonstrated their potential in planning and reasoning tasks, offering a flexible alternative to classical pathfinding algorithms. However, most existing studies focus on LLMs' independent reasoning capabilities and overlook the potential synergy between LLMs and traditional algorithms. To fill this gap, we propose a comprehensive evaluation benchmark GridRoute to assess how LLMs can take advantage of traditional algorithms. We also propose a novel hybrid prompting technique called Algorithm of Thought (AoT), which introduces traditional algorithms' guidance into prompting. Our benchmark evaluates six LLMs ranging from 7B to 72B parameters across various map sizes, assessing their performance in correctness, optimality, and efficiency in grid environments with varying sizes. Our results show that AoT significantly boosts performance across all model sizes, particularly in larger or more complex environments, suggesting a promising approach to addressing path planning challenges. Our code is open-sourced at https://github.com/LinChance/GridRoute.
Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis
The deployment of Large Language Models (LLMs) in robotic systems presents unique safety challenges, particularly in unpredictable environments. Although LLMs, leveraging zero-shot learning, enhance human-robot interaction and decision-making capabilities, their inherent probabilistic nature and lack of formal guarantees raise significant concerns for safety-critical applications. Traditional model-based verification approaches often rely on precise system models, which are difficult to obtain for real-world robotic systems and may not be fully trusted due to modeling inaccuracies, unmodeled dynamics, or environmental uncertainties. To address these challenges, this paper introduces a safety assurance framework for LLM-controlled robots based on data-driven reachability analysis, a formal verification technique that ensures all possible system trajectories remain within safe operational limits. Our framework specifically investigates the problem of instructing an LLM to navigate the robot to a specified goal and assesses its ability to generate low-level control actions that successfully guide the robot safely toward that goal. By leveraging historical data to construct reachable sets of states for the robot-LLM system, our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models. We validate the framework through experimental case studies in autonomous navigation and task planning, demonstrating its effectiveness in mitigating risks associated with LLM-generated commands. This work advances the integration of formal methods into LLM-based robotics, offering a principled and practical approach to ensuring safety in next-generation autonomous systems.
Planning in Markov Decision Processes with Gap-Dependent Sample Complexity
We propose MDP-GapE, a new trajectory-based Monte-Carlo Tree Search algorithm for planning in a Markov Decision Process in which transitions have a finite support. We prove an upper bound on the number of calls to the generative models needed for MDP-GapE to identify a near-optimal action with high probability. This problem-dependent sample complexity result is expressed in terms of the sub-optimality gaps of the state-action pairs that are visited during exploration. Our experiments reveal that MDP-GapE is also effective in practice, in contrast with other algorithms with sample complexity guarantees in the fixed-confidence setting, that are mostly theoretical.
GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
Many graph algorithms can be viewed as sets of rules that are iteratively applied, with the number of iterations dependent on the size and complexity of the input graph. Existing machine learning architectures often struggle to represent these algorithmic decisions as discrete state transitions. Therefore, we propose a novel framework: GraphFSA (Graph Finite State Automaton). GraphFSA is designed to learn a finite state automaton that runs on each node of a given graph. We test GraphFSA on cellular automata problems, showcasing its abilities in a straightforward algorithmic setting. For a comprehensive empirical evaluation of our framework, we create a diverse range of synthetic problems. As our main application, we then focus on learning more elaborate graph algorithms. Our findings suggest that GraphFSA exhibits strong generalization and extrapolation abilities, presenting an alternative approach to represent these algorithms.
rl_reach: Reproducible Reinforcement Learning Experiments for Robotic Reaching Tasks
Training reinforcement learning agents at solving a given task is highly dependent on identifying optimal sets of hyperparameters and selecting suitable environment input / output configurations. This tedious process could be eased with a straightforward toolbox allowing its user to quickly compare different training parameter sets. We present rl_reach, a self-contained, open-source and easy-to-use software package designed to run reproducible reinforcement learning experiments for customisable robotic reaching tasks. rl_reach packs together training environments, agents, hyperparameter optimisation tools and policy evaluation scripts, allowing its users to quickly investigate and identify optimal training configurations. rl_reach is publicly available at this URL: https://github.com/PierreExeter/rl_reach.
Convergent Reinforcement Learning Algorithms for Stochastic Shortest Path Problem
In this paper we propose two algorithms in the tabular setting and an algorithm for the function approximation setting for the Stochastic Shortest Path (SSP) problem. SSP problems form an important class of problems in Reinforcement Learning (RL), as other types of cost-criteria in RL can be formulated in the setting of SSP. We show asymptotic almost-sure convergence for all our algorithms. We observe superior performance of our tabular algorithms compared to other well-known convergent RL algorithms. We further observe reliable performance of our function approximation algorithm compared to other algorithms in the function approximation setting.
Simulation of Graph Algorithms with Looped Transformers
The execution of graph algorithms using neural networks has recently attracted significant interest due to promising empirical progress. This motivates further understanding of how neural networks can replicate reasoning steps with relational data. In this work, we study the ability of transformer networks to simulate algorithms on graphs from a theoretical perspective. The architecture that we utilize is a looped transformer with extra attention heads that interact with the graph. We prove by construction that this architecture can simulate algorithms such as Dijkstra's shortest path algorithm, Breadth- and Depth-First Search, and Kosaraju's strongly connected components algorithm. The width of the network does not increase with the size of the input graph, which implies that the network can simulate the above algorithms for any graph. Despite this property, we show that there is a limit to simulation in our solution due to finite precision. Finally, we show a Turing Completeness result with constant width when the extra attention heads are utilized.
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Offline reinforcement learning aims to train agents from pre-collected datasets. However, this comes with the added challenge of estimating the value of behaviors not covered in the dataset. Model-based methods offer a potential solution by training an approximate dynamics model, which then allows collection of additional synthetic data via rollouts in this model. The prevailing theory treats this approach as online RL in an approximate dynamics model, and any remaining performance gap is therefore understood as being due to dynamics model errors. In this paper, we analyze this assumption and investigate how popular algorithms perform as the learned dynamics model is improved. In contrast to both intuition and theory, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail. This reveals a key oversight: The theoretical foundations assume sampling of full horizon rollouts in the learned dynamics model; however, in practice, the number of model-rollout steps is aggressively reduced to prevent accumulating errors. We show that this truncation of rollouts results in a set of edge-of-reach states at which we are effectively ``bootstrapping from the void.'' This triggers pathological value overestimation and complete performance collapse. We term this the edge-of-reach problem. Based on this new insight, we fill important gaps in existing theory, and reveal how prior model-based methods are primarily addressing the edge-of-reach problem, rather than model-inaccuracy as claimed. Finally, we propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem and hence - unlike existing methods - does not fail as the dynamics model is improved. Code open-sourced at: github.com/anyasims/edge-of-reach.
FMT^{x}: An Efficient and Asymptotically Optimal Extension of the Fast Marching Tree for Dynamic Replanning
Path planning in dynamic environments remains a core challenge in robotics, especially as autonomous systems are deployed in unpredictable spaces such as warehouses and public roads. While algorithms like Fast Marching Tree (FMT^{*}) offer asymptotically optimal solutions in static settings, their single-pass design prevents path revisions which are essential for real-time adaptation. On the other hand, full replanning is often too computationally expensive. This paper introduces FMT^{x}, an extension of the Fast Marching Tree algorithm that enables efficient and consistent replanning in dynamic environments. We revisit the neighbor selection rule of FMT^{*} and demonstrate that a minimal change overcomes its single-pass limitation, enabling the algorithm to update cost-to-come values upon discovering better connections without sacrificing asymptotic optimality or computational efficiency. By maintaining a cost-ordered priority queue and applying a selective update condition that uses an expanding neighbor to identify and trigger the re-evaluation of any node with a potentially suboptimal path, FMT^{x} ensures that suboptimal routes are efficiently repaired as the environment evolves. This targeted strategy preserves the inherent efficiency of FMT^{*} while enabling robust adaptation to changes in obstacle configuration. FMT^{x} is proven to recover an asymptotically optimal solution after environmental changes. Experimental results demonstrate that FMT^{x} outperforms the influential replanner RRT^{x}, reacting more swiftly to dynamic events with lower computational overhead and thus offering a more effective solution for real-time robotic navigation in unpredictable worlds.
Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erdos, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.
Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents
In this paper, we study the problem of planning in Minecraft, a popular, democratized yet challenging open-ended environment for developing multi-task embodied agents. We've found two primary challenges of empowering such agents with planning: 1) planning in an open-ended world like Minecraft requires precise and multi-step reasoning due to the long-term nature of the tasks, and 2) as vanilla planners do not consider the proximity to the current agent when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient. To this end, we propose "Describe, Explain, Plan and Select" (DEPS), an interactive planning approach based on Large Language Models (LLMs). Our approach helps with better error correction from the feedback during the long-haul planning, while also bringing the sense of proximity via goal Selector, a learnable module that ranks parallel sub-goals based on the estimated steps of completion and improves the original plan accordingly. Our experiments mark the milestone of the first multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly doubles the overall performances. Finally, the ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the ObtainDiamond grand challenge with our approach. The code is released at https://github.com/CraftJarvis/MC-Planner.
New metrics and search algorithms for weighted causal DAGs
Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.
Is Computational Complexity a Barrier to Manipulation?
When agents are acting together, they may need a simple mechanism to decide on joint actions. One possibility is to have the agents express their preferences in the form of a ballot and use a voting rule to decide the winning action(s). Unfortunately, agents may try to manipulate such an election by misreporting their preferences. Fortunately, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. To address this issue, I suggest studying empirically if computational complexity is in practice a barrier to manipulation. The basic tool used in my investigations is the identification of computational "phase transitions". Such an approach has been fruitful in identifying hard instances of propositional satisfiability and other NP-hard problems. I show that phase transition behaviour gives insight into the hardness of manipulating voting rules, increasing concern that computational complexity is indeed any sort of barrier. Finally, I look at the problem of computing manipulation of other, related problems like stable marriage and tournament problems.
Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought
Large Language Models (LLMs) have demonstrated remarkable performance in many applications, including challenging reasoning problems via chain-of-thoughts (CoTs) techniques that generate ``thinking tokens'' before answering the questions. While existing theoretical works demonstrate that CoTs with discrete tokens boost the capability of LLMs, recent work on continuous CoTs lacks a theoretical understanding of why it outperforms discrete counterparts in various reasoning tasks such as directed graph reachability, a fundamental graph reasoning problem that includes many practical domain applications as special cases. In this paper, we prove that a two-layer transformer with D steps of continuous CoTs can solve the directed graph reachability problem, where D is the diameter of the graph, while the best known result of constant-depth transformers with discrete CoTs requires O(n^2) decoding steps where n is the number of vertices (D<n). In our construction, each continuous thought vector is a superposition state that encodes multiple search frontiers simultaneously (i.e., parallel breadth-first search (BFS)), while discrete CoTs must choose a single path sampled from the superposition state, which leads to sequential search that requires many more steps and may be trapped into local solutions. We also performed extensive experiments to verify that our theoretical construction aligns well with the empirical solution obtained via training dynamics. Notably, encoding of multiple search frontiers as a superposition state automatically emerges in training continuous CoTs, without explicit supervision to guide the model to explore multiple paths simultaneously.
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Reinforcement learning (RL) has achieved tremendous success in many complex decision making tasks. When it comes to deploying RL in the real world, safety concerns are usually raised, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safety control has a long history, the study of safe RL algorithms is still in the early stages. To establish a good foundation for future research in this thread, in this paper, we provide a review for safe RL from the perspectives of methods, theory and applications. Firstly, we review the progress of safe RL from five dimensions and come up with five problems that are crucial for safe RL being deployed in real-world applications, coined as "2H3W". Secondly, we analyze the theory and algorithm progress from the perspectives of answering the "2H3W" problems. Then, the sample complexity of safe RL methods is reviewed and discussed, followed by an introduction of the applications and benchmarks of safe RL algorithms. Finally, we open the discussion of the challenging problems in safe RL, hoping to inspire more future research on this thread. To advance the study of safe RL algorithms, we release a benchmark suite, an open-sourced repository containing the implementations of major safe RL algorithms, along with tutorials at the link: https://github.com/chauncygu/Safe-Reinforcement-Learning-Baselines.git.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
Optimal Seeding and Self-Reproduction from a Mathematical Point of View
P. Kabamba developed generation theory as a tool for studying self-reproducing systems. We provide an alternative definition of a generation system and give a complete solution to the problem of finding optimal seeds for a finite self-replicating system. We also exhibit examples illustrating a connection between self-replication and fixed-point theory.
Using Sequential Runtime Distributions for the Parallel Speedup Prediction of SAT Local Search
This paper presents a detailed analysis of the scalability and parallelization of local search algorithms for the Satisfiability problem. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of two SAT local search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the results of an actual experimentation on parallel hardware up to 384 cores. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of instances (random and crafted), we observe that the local search solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal.
Reinforcement Learning in Low-Rank MDPs with Density Features
MDPs with low-rank transitions -- that is, the transition matrix can be factored into the product of two matrices, left and right -- is a highly representative structure that enables tractable learning. The left matrix enables expressive function approximation for value-based learning and has been studied extensively. In this work, we instead investigate sample-efficient learning with density features, i.e., the right matrix, which induce powerful models for state-occupancy distributions. This setting not only sheds light on leveraging unsupervised learning in RL, but also enables plug-in solutions for convex RL. In the offline setting, we propose an algorithm for off-policy estimation of occupancies that can handle non-exploratory data. Using this as a subroutine, we further devise an online algorithm that constructs exploratory data distributions in a level-by-level manner. As a central technical challenge, the additive error of occupancy estimation is incompatible with the multiplicative definition of data coverage. In the absence of strong assumptions like reachability, this incompatibility easily leads to exponential error blow-up, which we overcome via novel technical tools. Our results also readily extend to the representation learning setting, when the density features are unknown and must be learned from an exponentially large candidate set.
Benchmarking global optimization techniques for unmanned aerial vehicle path planning
The Unmanned Aerial Vehicle (UAV) path planning problem is a complex optimization problem in the field of robotics. In this paper, we investigate the possible utilization of this problem in benchmarking global optimization methods. We devise a problem instance generator and pick 56 representative instances, which we compare to established benchmarking suits through Exploratory Landscape Analysis to show their uniqueness. For the computational comparison, we select twelve well-performing global optimization techniques from both subfields of stochastic algorithms (evolutionary computation methods) and deterministic algorithms (Dividing RECTangles, or DIRECT-type methods). The experiments were conducted in settings with varying dimensionality and computational budgets. The results were analyzed through several criteria (number of best-found solutions, mean relative error, Friedman ranks) and utilized established statistical tests. The best-ranking methods for the UAV problems were almost universally the top-performing evolutionary techniques from recent competitions on numerical optimization at the Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. Lastly, we discussed the variable dimension characteristics of the studied UAV problems that remain still largely under-investigated.
Reachability-Aware Laplacian Representation in Reinforcement Learning
In Reinforcement Learning (RL), Laplacian Representation (LapRep) is a task-agnostic state representation that encodes the geometry of the environment. A desirable property of LapRep stated in prior works is that the Euclidean distance in the LapRep space roughly reflects the reachability between states, which motivates the usage of this distance for reward shaping. However, we find that LapRep does not necessarily have this property in general: two states having small distance under LapRep can actually be far away in the environment. Such mismatch would impede the learning process in reward shaping. To fix this issue, we introduce a Reachability-Aware Laplacian Representation (RA-LapRep), by properly scaling each dimension of LapRep. Despite the simplicity, we demonstrate that RA-LapRep can better capture the inter-state reachability as compared to LapRep, through both theoretical explanations and experimental results. Additionally, we show that this improvement yields a significant boost in reward shaping performance and also benefits bottleneck state discovery.
Controlgym: Large-Scale Safety-Critical Control Environments for Benchmarking Reinforcement Learning Algorithms
We introduce controlgym, a library of thirty-six safety-critical industrial control settings, and ten infinite-dimensional partial differential equation (PDE)-based control problems. Integrated within the OpenAI Gym/Gymnasium (Gym) framework, controlgym allows direct applications of standard reinforcement learning (RL) algorithms like stable-baselines3. Our control environments complement those in Gym with continuous, unbounded action and observation spaces, motivated by real-world control applications. Moreover, the PDE control environments uniquely allow the users to extend the state dimensionality of the system to infinity while preserving the intrinsic dynamics. This feature is crucial for evaluating the scalability of RL algorithms for control. This project serves the learning for dynamics & control (L4DC) community, aiming to explore key questions: the convergence of RL algorithms in learning control policies; the stability and robustness issues of learning-based controllers; and the scalability of RL algorithms to high- and potentially infinite-dimensional systems. We open-source the controlgym project at https://github.com/xiangyuan-zhang/controlgym.
On the Design and Analysis of LLM-Based Algorithms
We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.
Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary
We consider online scheduling on unrelated (heterogeneous) machines in a speed-oblivious setting, where an algorithm is unaware of the exact job-dependent processing speeds. We show strong impossibility results for clairvoyant and non-clairvoyant algorithms and overcome them in models inspired by practical settings: (i) we provide competitive learning-augmented algorithms, assuming that (possibly erroneous) predictions on the speeds are given, and (ii) we provide competitive algorithms for the speed-ordered model, where a single global order of machines according to their unknown job-dependent speeds is known. We prove strong theoretical guarantees and evaluate our findings on a representative heterogeneous multi-core processor. These seem to be the first empirical results for scheduling algorithms with predictions that are evaluated in a non-synthetic hardware environment.
When is Realizability Sufficient for Off-Policy Reinforcement Learning?
Model-free algorithms for reinforcement learning typically require a condition called Bellman completeness in order to successfully operate off-policy with function approximation, unless additional conditions are met. However, Bellman completeness is a requirement that is much stronger than realizability and that is deemed to be too strong to hold in practice. In this work, we relax this structural assumption and analyze the statistical complexity of off-policy reinforcement learning when only realizability holds for the prescribed function class. We establish finite-sample guarantees for off-policy reinforcement learning that are free of the approximation error term known as inherent Bellman error, and that depend on the interplay of three factors. The first two are well known: they are the metric entropy of the function class and the concentrability coefficient that represents the cost of learning off-policy. The third factor is new, and it measures the violation of Bellman completeness, namely the mis-alignment between the chosen function class and its image through the Bellman operator. In essence, these error bounds establish that off-policy reinforcement learning remains statistically viable even in absence of Bellman completeness, and characterize the intermediate situation between the favorable Bellman complete setting and the worst-case scenario where exponential lower bounds are in force. Our analysis directly applies to the solution found by temporal difference algorithms when they converge.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Machine Learning for Online Algorithm Selection under Censored Feedback
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms. For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime. As the latter is known to exhibit a heavy-tail distribution, an algorithm is normally stopped when exceeding a predefined upper time limit. As a consequence, machine learning methods used to optimize an algorithm selection strategy in a data-driven manner need to deal with right-censored samples, a problem that has received little attention in the literature so far. In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem. Moreover, we adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon. In an extensive experimental evaluation on an adapted version of the ASlib benchmark, we demonstrate that theoretically well-founded methods based on Thompson sampling perform specifically strong and improve in comparison to existing methods.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with General Utilities
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints. The objective and constraints are described by {\it general utilities}, i.e., nonlinear functions of the long-term state-action occupancy measure, which encompass broader decision-making goals such as risk, exploration, or imitations. The exponential growth of the state-action space size with the number of agents presents challenges for global observability, further exacerbated by the global coupling arising from agents' safety constraints. To tackle this issue, we propose a primal-dual method utilizing shadow reward and κ-hop neighbor truncation under a form of correlation decay property, where κ is the communication radius. In the exact setting, our algorithm converges to a first-order stationary point (FOSP) at the rate of Oleft(T^{-2/3}right). In the sample-based setting, we demonstrate that, with high probability, our algorithm requires mathcal{O}left(ε^{-3.5}right) samples to achieve an ε-FOSP with an approximation error of O(φ_0^{2κ}), where φ_0in (0,1). Finally, we demonstrate the effectiveness of our model through extensive numerical experiments.
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
A Provably Efficient Sample Collection Strategy for Reinforcement Learning
One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off the exploration of the environment and the exploitation of the samples to optimize its behavior. Whether we optimize for regret, sample complexity, state-space coverage or model estimation, we need to strike a different exploration-exploitation trade-off. In this paper, we propose to tackle the exploration-exploitation problem following a decoupled approach composed of: 1) An "objective-specific" algorithm that (adaptively) prescribes how many samples to collect at which states, as if it has access to a generative model (i.e., a simulator of the environment); 2) An "objective-agnostic" sample collection exploration strategy responsible for generating the prescribed samples as fast as possible. Building on recent methods for exploration in the stochastic shortest path problem, we first provide an algorithm that, given as input the number of samples b(s,a) needed in each state-action pair, requires O(B D + D^{3/2} S^2 A) time steps to collect the B=sum_{s,a} b(s,a) desired samples, in any unknown communicating MDP with S states, A actions and diameter D. Then we show how this general-purpose exploration algorithm can be paired with "objective-specific" strategies that prescribe the sample requirements to tackle a variety of settings -- e.g., model estimation, sparse reward discovery, goal-free cost-free exploration in communicating MDPs -- for which we obtain improved or novel sample complexity guarantees.
Reinforcement Learning for Variable Selection in a Branch and Bound Algorithm
Mixed integer linear programs are commonly solved by Branch and Bound algorithms. A key factor of the efficiency of the most successful commercial solvers is their fine-tuned heuristics. In this paper, we leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem and compare it with a commercial solver. We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task. The strength of our method lies in the consistency between a local value function and a global metric of interest. In addition, we provide insights for adapting known RL techniques to the Branch and Bound setting, and present a new neural network architecture inspired from the literature. To our knowledge, it is the first time Reinforcement Learning has been used to fully optimise the branching strategy. Computational experiments show that our method is appropriate and able to generalise well to new instances.
Sparse Multilevel Roadmaps for High-Dimensional Robot Motion Planning
Sparse roadmaps are important to compactly represent state spaces, to determine problems to be infeasible and to terminate in finite time. However, sparse roadmaps do not scale well to high-dimensional planning problems. In prior work, we showed improved planning performance on high-dimensional planning problems by using multilevel abstractions to simplify state spaces. In this work, we generalize sparse roadmaps to multilevel abstractions by developing a novel algorithm, the sparse multilevel roadmap planner (SMLR). To this end, we represent multilevel abstractions using the language of fiber bundles, and generalize sparse roadmap planners by using the concept of restriction sampling with visibility regions. We argue SMLR to be probabilistically complete and asymptotically near-optimal by inheritance from sparse roadmap planners. In evaluations, we outperform sparse roadmap planners on challenging planning problems, in particular problems which are high-dimensional, contain narrow passages or are infeasible. We thereby demonstrate sparse multilevel roadmaps as an efficient tool for feasible and infeasible high-dimensional planning problems.
Minimalistic Predictions to Schedule Jobs with Online Precedence Constraints
We consider non-clairvoyant scheduling with online precedence constraints, where an algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed. Given strong impossibility results in classical competitive analysis, we investigate the problem in a learning-augmented setting, where an algorithm has access to predictions without any quality guarantee. We discuss different prediction models: novel problem-specific models as well as general ones, which have been proposed in previous works. We present lower bounds and algorithmic upper bounds for different precedence topologies, and thereby give a structured overview on which and how additional (possibly erroneous) information helps for designing better algorithms. Along the way, we also improve bounds on traditional competitive ratios for existing algorithms.
Breadth-First Search vs. Restarting Random Walks for Escaping Uninformed Heuristic Regions
Greedy search methods like Greedy Best-First Search (GBFS) and Enforced Hill-Climbing (EHC) often struggle when faced with Uninformed Heuristic Regions (UHRs) like heuristic local minima or plateaus. In this work, we theoretically and empirically compare two popular methods for escaping UHRs in breadth-first search (BrFS) and restarting random walks (RRWs). We first derive the expected runtime of escaping a UHR using BrFS and RRWs, based on properties of the UHR and the random walk procedure, and then use these results to identify when RRWs will be faster in expectation than BrFS. We then evaluate these methods for escaping UHRs by comparing standard EHC, which uses BrFS to escape UHRs, to variants of EHC called EHC-RRW, which use RRWs for that purpose. EHC-RRW is shown to have strong expected runtime guarantees in cases where EHC has previously been shown to be effective. We also run experiments with these approaches on PDDL planning benchmarks to better understand their relative effectiveness for escaping UHRs.
Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width
Conformant planning is the problem of finding a sequence of actions for achieving a goal in the presence of uncertainty in the initial state or action effects. The problem has been approached as a path-finding problem in belief space where good belief representations and heuristics are critical for scaling up. In this work, a different formulation is introduced for conformant problems with deterministic actions where they are automatically converted into classical ones and solved by an off-the-shelf classical planner. The translation maps literals L and sets of assumptions t about the initial situation, into new literals KL/t that represent that L must be true if t is initially true. We lay out a general translation scheme that is sound and establish the conditions under which the translation is also complete. We show that the complexity of the complete translation is exponential in a parameter of the problem called the conformant width, which for most benchmarks is bounded. The planner based on this translation exhibits good performance in comparison with existing planners, and is the basis for T0, the best performing planner in the Conformant Track of the 2006 International Planning Competition.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.
Behavioral Cloning via Search in Video PreTraining Latent Space
Our aim is to build autonomous agents that can solve tasks in environments like Minecraft. To do so, we used an imitation learning-based approach. We formulate our control problem as a search problem over a dataset of experts' demonstrations, where the agent copies actions from a similar demonstration trajectory of image-action pairs. We perform a proximity search over the BASALT MineRL-dataset in the latent representation of a Video PreTraining model. The agent copies the actions from the expert trajectory as long as the distance between the state representations of the agent and the selected expert trajectory from the dataset do not diverge. Then the proximity search is repeated. Our approach can effectively recover meaningful demonstration trajectories and show human-like behavior of an agent in the Minecraft environment.
Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning
Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.
Adaptive Multi-Goal Exploration
We introduce a generic strategy for provably efficient multi-goal exploration. It relies on AdaGoal, a novel goal selection scheme that leverages a measure of uncertainty in reaching states to adaptively target goals that are neither too difficult nor too easy. We show how AdaGoal can be used to tackle the objective of learning an ε-optimal goal-conditioned policy for the (initially unknown) set of goal states that are reachable within L steps in expectation from a reference state s_0 in a reward-free Markov decision process. In the tabular case with S states and A actions, our algorithm requires O(L^3 S A ε^{-2}) exploration steps, which is nearly minimax optimal. We also readily instantiate AdaGoal in linear mixture Markov decision processes, yielding the first goal-oriented PAC guarantee with linear function approximation. Beyond its strong theoretical guarantees, we anchor AdaGoal in goal-conditioned deep reinforcement learning, both conceptually and empirically, by connecting its idea of selecting "uncertain" goals to maximizing value ensemble disagreement.
PushWorld: A benchmark for manipulation planning with tools and movable obstacles
While recent advances in artificial intelligence have achieved human-level performance in environments like Starcraft and Go, many physical reasoning tasks remain challenging for modern algorithms. To date, few algorithms have been evaluated on physical tasks that involve manipulating objects when movable obstacles are present and when tools must be used to perform the manipulation. To promote research on such tasks, we introduce PushWorld, an environment with simplistic physics that requires manipulation planning with both movable obstacles and tools. We provide a benchmark of more than 200 PushWorld puzzles in PDDL and in an OpenAI Gym environment. We evaluate state-of-the-art classical planning and reinforcement learning algorithms on this benchmark, and we find that these baseline results are below human-level performance. We then provide a new classical planning heuristic that solves the most puzzles among the baselines, and although it is 40 times faster than the best baseline planner, it remains below human-level performance.
A Massively Parallel Dynamic Programming for Approximate Rectangle Escape Problem
Sublinear time complexity is required by the massively parallel computation (MPC) model. Breaking dynamic programs into a set of sparse dynamic programs that can be divided, solved, and merged in sublinear time. The rectangle escape problem (REP) is defined as follows: For n axis-aligned rectangles inside an axis-aligned bounding box B, extend each rectangle in only one of the four directions: up, down, left, or right until it reaches B and the density k is minimized, where k is the maximum number of extensions of rectangles to the boundary that pass through a point inside bounding box B. REP is NP-hard for k>1. If the rectangles are points of a grid (or unit squares of a grid), the problem is called the square escape problem (SEP) and it is still NP-hard. We give a 2-approximation algorithm for SEP with kgeq2 with time complexity O(n^{3/2}k^2). This improves the time complexity of existing algorithms which are at least quadratic. Also, the approximation ratio of our algorithm for kgeq 3 is 3/2 which is tight. We also give a 8-approximation algorithm for REP with time complexity O(nlog n+nk) and give a MPC version of this algorithm for k=O(1) which is the first parallel algorithm for this problem.
B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests
Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.
Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model
Safe offline RL is a promising way to bypass risky online interactions towards safe policy learning. Most existing methods only enforce soft constraints, i.e., constraining safety violations in expectation below thresholds predetermined. This can lead to potentially unsafe outcomes, thus unacceptable in safety-critical scenarios. An alternative is to enforce the hard constraint of zero violation. However, this can be challenging in offline setting, as it needs to strike the right balance among three highly intricate and correlated aspects: safety constraint satisfaction, reward maximization, and behavior regularization imposed by offline datasets. Interestingly, we discover that via reachability analysis of safe-control theory, the hard safety constraint can be equivalently translated to identifying the largest feasible region given the offline dataset. This seamlessly converts the original trilogy problem to a feasibility-dependent objective, i.e., maximizing reward value within the feasible region while minimizing safety risks in the infeasible region. Inspired by these, we propose FISOR (FeasIbility-guided Safe Offline RL), which allows safety constraint adherence, reward maximization, and offline policy learning to be realized via three decoupled processes, while offering strong safety performance and stability. In FISOR, the optimal policy for the translated optimization problem can be derived in a special form of weighted behavior cloning. Thus, we propose a novel energy-guided diffusion model that does not require training a complicated time-dependent classifier to extract the policy, greatly simplifying the training. We compare FISOR against baselines on DSRL benchmark for safe offline RL. Evaluation results show that FISOR is the only method that can guarantee safety satisfaction in all tasks, while achieving top returns in most tasks.
Comparing Channel Restrictions of Communicating State Machines, High-level Message Sequence Charts, and Multiparty Session Types
Communicating state machines provide a formal foundation for distributed computation. Unfortunately, they are Turing-complete and, thus, challenging to analyse. In this paper, we classify restrictions on channels which have been proposed to work around the undecidability of verification questions. We compare half-duplex communication, existential B-boundedness, and k-synchronisability. These restrictions do not prevent the communication channels from growing arbitrarily large but still restrict the power of the model. Each restriction gives rise to a set of languages so, for every pair of restrictions, we check whether one subsumes the other or if they are incomparable. We investigate their relationship in two different contexts: first, the one of communicating state machines, and, second, the one of communication protocol specifications using high-level message sequence charts. Surprisingly, these two contexts yield different conclusions. In addition, we integrate multiparty session types, another approach to specify communication protocols, into our classification. We show that multiparty session type languages are half-duplex, existentially 1-bounded, and 1-synchronisable. To~show this result, we provide the first formal embedding of multiparty session types into high-level message sequence charts.
ReachAgent: Enhancing Mobile Agent via Page Reaching and Operation
Recently, mobile AI agents have gained increasing attention. Given a task, mobile AI agents can interact with mobile devices in multiple steps and finally form a GUI flow that solves the task. However, existing agents tend to focus on most task-relevant elements at each step, leading to local optimal solutions and ignoring the overall GUI flow. To address this issue, we constructed a training dataset called MobileReach, which breaks the task into page reaching and operation subtasks. Furthermore, we propose ReachAgent, a two-stage framework that focuses on improving its task-completion abilities. It utilizes the page reaching and page operation subtasks, along with reward-based preference GUI flows, to further enhance the agent. Experimental results show that ReachAgent significantly improves the IoU Acc and Text Acc by 7.12% and 7.69% on the step-level and 4.72% and 4.63% on the task-level compared to the SOTA agent. Our data and code will be released upon acceptance.
Capabilities of Large Language Models in Control Engineering: A Benchmark Study on GPT-4, Claude 3 Opus, and Gemini 1.0 Ultra
In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as GPT-4, Claude 3 Opus, and Gemini 1.0 Ultra in solving undergraduate-level control problems. Controls provides an interesting case study for LLM reasoning due to its combination of mathematical theory and engineering design. We introduce ControlBench, a benchmark dataset tailored to reflect the breadth, depth, and complexity of classical control design. We use this dataset to study and evaluate the problem-solving abilities of these LLMs in the context of control engineering. We present evaluations conducted by a panel of human experts, providing insights into the accuracy, reasoning, and explanatory prowess of LLMs in control engineering. Our analysis reveals the strengths and limitations of each LLM in the context of classical control, and our results imply that Claude 3 Opus has become the state-of-the-art LLM for solving undergraduate control problems. Our study serves as an initial step towards the broader goal of employing artificial general intelligence in control engineering.
Meta-Learning Parameterized Skills
We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks.
Prioritized Unit Propagation with Periodic Resetting is (Almost) All You Need for Random SAT Solving
We propose prioritized unit propagation with periodic resetting, which is a simple but surprisingly effective algorithm for solving random SAT instances that are meant to be hard. In particular, an evaluation on the Random Track of the 2017 and 2018 SAT competitions shows that a basic prototype of this simple idea already ranks at second place in both years. We share this observation in the hope that it helps the SAT community better understand the hardness of random instances used in competitions and inspire other interesting ideas on SAT solving.
Towards Theoretical Understanding of Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent. A well-known limitation of IRL is the ambiguity in the choice of the reward function, due to the existence of multiple rewards that explain the observed behavior. This limitation has been recently circumvented by formulating IRL as the problem of estimating the feasible reward set, i.e., the region of the rewards compatible with the expert's behavior. In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model. We start by formally introducing the problem of estimating the feasible reward set, the corresponding PAC requirement, and discussing the properties of particular classes of rewards. Then, we provide the first minimax lower bound on the sample complexity for the problem of estimating the feasible reward set of order {Omega}Bigl( H^3SA{epsilon^2} bigl( log bigl(1{delta}bigl) + S bigl)Bigl), being S and A the number of states and actions respectively, H the horizon, epsilon the desired accuracy, and delta the confidence. We analyze the sample complexity of a uniform sampling strategy (US-IRL), proving a matching upper bound up to logarithmic factors. Finally, we outline several open questions in IRL and propose future research directions.
Optimal Sample Complexity for Average Reward Markov Decision Processes
We resolve the open question regarding the sample complexity of policy learning for maximizing the long-run average reward associated with a uniformly ergodic Markov decision process (MDP), assuming a generative model. In this context, the existing literature provides a sample complexity upper bound of widetilde O(|S||A|t_{mix}^2 epsilon^{-2}) and a lower bound of Omega(|S||A|t_{mix} epsilon^{-2}). In these expressions, |S| and |A| denote the cardinalities of the state and action spaces respectively, t_{mix} serves as a uniform upper limit for the total variation mixing times, and epsilon signifies the error tolerance. Therefore, a notable gap of t_{mix} still remains to be bridged. Our primary contribution is the development of an estimator for the optimal policy of average reward MDPs with a sample complexity of widetilde O(|S||A|t_{mix}epsilon^{-2}). This marks the first algorithm and analysis to reach the literature's lower bound. Our new algorithm draws inspiration from ideas in Li et al. (2020), Jin and Sidford (2021), and Wang et al. (2023). Additionally, we conduct numerical experiments to validate our theoretical findings.
Damped Newton Method with Near-Optimal Global Oleft(k^{-3} right) Convergence Rate
This paper investigates the global convergence of stepsized Newton methods for convex functions. We propose several simple stepsize schedules with fast global convergence guarantees, up to O (k^{-3}), nearly matching lower complexity bounds Omega (k^{-3.5}) of second-order methods. For cases with multiple plausible smoothness parameterizations or an unknown smoothness constant, we introduce a stepsize backtracking procedure that ensures convergence as if the optimal smoothness parameters were known.
The Price of Differential Privacy under Continual Observation
We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is tilde Omega(T^{1/3}) times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in T) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation -- specifically, those that require selecting the largest of a set of sums -- are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest.
On Representation Complexity of Model-based and Model-free Reinforcement Learning
We study the representation complexity of model-based and model-free reinforcement learning (RL) in the context of circuit complexity. We prove theoretically that there exists a broad class of MDPs such that their underlying transition and reward functions can be represented by constant depth circuits with polynomial size, while the optimal Q-function suffers an exponential circuit complexity in constant-depth circuits. By drawing attention to the approximation errors and building connections to complexity theory, our theory provides unique insights into why model-based algorithms usually enjoy better sample complexity than model-free algorithms from a novel representation complexity perspective: in some cases, the ground-truth rule (model) of the environment is simple to represent, while other quantities, such as Q-function, appear complex. We empirically corroborate our theory by comparing the approximation error of the transition kernel, reward function, and optimal Q-function in various Mujoco environments, which demonstrates that the approximation errors of the transition kernel and reward function are consistently lower than those of the optimal Q-function. To the best of our knowledge, this work is the first to study the circuit complexity of RL, which also provides a rigorous framework for future research.
Multi-Agent Pathfinding with Continuous Time
Multi-Agent Pathfinding (MAPF) is the problem of finding paths for multiple agents such that every agent reaches its goal and the agents do not collide. Most prior work on MAPF was on grids, assumed agents' actions have uniform duration, and that time is discretized into timesteps. We propose a MAPF algorithm that does not rely on these assumptions, is complete, and provides provably optimal solutions. This algorithm is based on a novel adaptation of Safe interval path planning (SIPP), a continuous time single-agent planning algorithm, and a modified version of Conflict-based search (CBS), a state of the art multi-agent pathfinding algorithm. We analyze this algorithm, discuss its pros and cons, and evaluate it experimentally on several standard benchmarks.
A Compositional Atlas for Algebraic Circuits
Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
A Group with Exactly One Noncommutator
The question of whether there exists a finite group of order at least three in which every element except one is a commutator has remained unresolved in group theory. In this article, we address this open problem by developing an algorithmic approach that leverages several group theoretic properties of such groups. Specifically, we utilize a result of Frobenius and various necessary properties of such groups, combined with Plesken and Holt's extensive enumeration of finite perfect groups, to systematically examine all finite groups up to a certain order for the desired property. The computational core of our work is implemented using the computer system GAP (Groups, Algorithms, and Programming). We discover two nonisomorphic groups of order 368,640 that exhibit the desired property. Our investigation also establishes that this order is the minimum order for such a group to exist. As a result, this study provides a positive answer to Problem 17.76 in the Kourovka Notebook. In addition to the algorithmic framework, this paper provides a structural description of one of the two groups found.
A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints
In many applications of Reinforcement Learning (RL), it is critically important that the algorithm performs safely, such that instantaneous hard constraints are satisfied at each step, and unsafe states and actions are avoided. However, existing algorithms for ''safe'' RL are often designed under constraints that either require expected cumulative costs to be bounded or assume all states are safe. Thus, such algorithms could violate instantaneous hard constraints and traverse unsafe states (and actions) in practice. Therefore, in this paper, we develop the first near-optimal safe RL algorithm for episodic Markov Decision Processes with unsafe states and actions under instantaneous hard constraints and the linear mixture model. It not only achieves a regret O(d H^3 sqrt{dK}{Delta_c}) that tightly matches the state-of-the-art regret in the setting with only unsafe actions and nearly matches that in the unconstrained setting, but is also safe at each step, where d is the feature-mapping dimension, K is the number of episodes, H is the number of steps in each episode, and Delta_c is a safety-related parameter. We also provide a lower bound Omega(max{dH K, H{Delta_c^2}}), which indicates that the dependency on Delta_c is necessary. Further, both our algorithm design and regret analysis involve several novel ideas, which may be of independent interest.
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
Solving robust MDPs as a sequence of static RL problems
Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.
Intelligent Go-Explore: Standing on the Shoulders of Giant Foundation Models
Go-Explore is a powerful family of algorithms designed to solve hard-exploration problems, built on the principle of archiving discovered states, and iteratively returning to and exploring from the most promising states. This approach has led to superhuman performance across a wide variety of challenging problems including Atari games and robotic control, but requires manually designing heuristics to guide exploration, which is time-consuming and infeasible in general. To resolve this, we propose Intelligent Go-Explore (IGE) which greatly extends the scope of the original Go-Explore by replacing these heuristics with the intelligence and internalized human notions of interestingness captured by giant foundation models (FMs). This provides IGE with a human-like ability to instinctively identify how interesting or promising any new state is (e.g. discovering new objects, locations, or behaviors), even in complex environments where heuristics are hard to define. Moreover, IGE offers the exciting and previously impossible opportunity to recognize and capitalize on serendipitous discoveries that cannot be predicted ahead of time. We evaluate IGE on a range of language-based tasks that require search and exploration. In Game of 24, a multistep mathematical reasoning problem, IGE reaches 100% success rate 70.8% faster than the best classic graph search baseline. Next, in BabyAI-Text, a challenging partially observable gridworld, IGE exceeds the previous SOTA with orders of magnitude fewer online samples. Finally, in TextWorld, we show the unique ability of IGE to succeed in settings requiring long-horizon exploration where prior SOTA FM agents like Reflexion completely fail. Overall, IGE combines the tremendous strengths of FMs and the powerful Go-Explore algorithm, opening up a new frontier of research into creating more generally capable agents with impressive exploration capabilities.
GenCtrl -- A Formal Controllability Toolkit for Generative Models
As generative models become ubiquitous, there is a critical need for fine-grained control over the generation process. Yet, while controlled generation methods from prompting to fine-tuning proliferate, a fundamental question remains unanswered: are these models truly controllable in the first place? In this work, we provide a theoretical framework to formally answer this question. Framing human-model interaction as a control process, we propose a novel algorithm to estimate the controllable sets of models in a dialogue setting. Notably, we provide formal guarantees on the estimation error as a function of sample complexity: we derive probably-approximately correct bounds for controllable set estimates that are distribution-free, employ no assumptions except for output boundedness, and work for any black-box nonlinear control system (i.e., any generative model). We empirically demonstrate the theoretical framework on different tasks in controlling dialogue processes, for both language models and text-to-image generation. Our results show that model controllability is surprisingly fragile and highly dependent on the experimental setting. This highlights the need for rigorous controllability analysis, shifting the focus from simply attempting control to first understanding its fundamental limits.
A localized approach to generalized Turán problems
Generalized Tur\'an problems ask for the maximum number of copies of a graph H in an n-vertex, F-free graph, denoted by ex(n,H,F). We show how to extend the new, localized approach of Bradac, Malec, and Tompkins to generalized Tur\'{a}n problems. We weight the copies of H (typically taking H=K_t), instead of the edges, based on the size of the largest clique, path, or star containing the vertices of the copy of H, and in each case prove a tight upper bound on the sum of the weights. A consequence of our new localized theorems is an asymptotic determination of ex(n,H,K_{1,r}) for every H having at least one dominating vertex and mex(m,H,K_{1,r}) for every H having at least two dominating vertices.
Unifying Tree Search Algorithm and Reward Design for LLM Reasoning: A Survey
Deliberative tree search is a cornerstone of modern Large Language Model (LLM) research, driving the pivot from brute-force scaling toward algorithmic efficiency. This single paradigm unifies two critical frontiers: Test-Time Scaling (TTS), which deploys on-demand computation to solve hard problems, and Self-Improvement, which uses search-generated data to durably enhance model parameters. However, this burgeoning field is fragmented and lacks a common formalism, particularly concerning the ambiguous role of the reward signal -- is it a transient heuristic or a durable learning target? This paper resolves this ambiguity by introducing a unified framework that deconstructs search algorithms into three core components: the Search Mechanism, Reward Formulation, and Transition Function. We establish a formal distinction between transient Search Guidance for TTS and durable Parametric Reward Modeling for Self-Improvement. Building on this formalism, we introduce a component-centric taxonomy, synthesize the state-of-the-art, and chart a research roadmap toward more systematic progress in creating autonomous, self-improving agents.
Motion Planning by Learning the Solution Manifold in Trajectory Optimization
The objective function used in trajectory optimization is often non-convex and can have an infinite set of local optima. In such cases, there are diverse solutions to perform a given task. Although there are a few methods to find multiple solutions for motion planning, they are limited to generating a finite set of solutions. To address this issue, we presents an optimization method that learns an infinite set of solutions in trajectory optimization. In our framework, diverse solutions are obtained by learning latent representations of solutions. Our approach can be interpreted as training a deep generative model of collision-free trajectories for motion planning. The experimental results indicate that the trained model represents an infinite set of homotopic solutions for motion planning problems.
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL
Training autonomous agents able to generalize to multiple tasks is a key target of Deep Reinforcement Learning (DRL) research. In parallel to improving DRL algorithms themselves, Automatic Curriculum Learning (ACL) study how teacher algorithms can train DRL agents more efficiently by adapting task selection to their evolving abilities. While multiple standard benchmarks exist to compare DRL agents, there is currently no such thing for ACL algorithms. Thus, comparing existing approaches is difficult, as too many experimental parameters differ from paper to paper. In this work, we identify several key challenges faced by ACL algorithms. Based on these, we present TeachMyAgent (TA), a benchmark of current ACL algorithms leveraging procedural task generation. It includes 1) challenge-specific unit-tests using variants of a procedural Box2D bipedal walker environment, and 2) a new procedural Parkour environment combining most ACL challenges, making it ideal for global performance assessment. We then use TeachMyAgent to conduct a comparative study of representative existing approaches, showcasing the competitiveness of some ACL algorithms that do not use expert knowledge. We also show that the Parkour environment remains an open problem. We open-source our environments, all studied ACL algorithms (collected from open-source code or re-implemented), and DRL students in a Python package available at https://github.com/flowersteam/TeachMyAgent.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
AlphaSnake: Policy Iteration on a Nondeterministic NP-hard Markov Decision Process
Reinforcement learning has recently been used to approach well-known NP-hard combinatorial problems in graph theory. Among these problems, Hamiltonian cycle problems are exceptionally difficult to analyze, even when restricted to individual instances of structurally complex graphs. In this paper, we use Monte Carlo Tree Search (MCTS), the search algorithm behind many state-of-the-art reinforcement learning algorithms such as AlphaZero, to create autonomous agents that learn to play the game of Snake, a game centered on properties of Hamiltonian cycles on grid graphs. The game of Snake can be formulated as a single-player discounted Markov Decision Process (MDP) where the agent must behave optimally in a stochastic environment. Determining the optimal policy for Snake, defined as the policy that maximizes the probability of winning - or win rate - with higher priority and minimizes the expected number of time steps to win with lower priority, is conjectured to be NP-hard. Performance-wise, compared to prior work in the Snake game, our algorithm is the first to achieve a win rate over 0.5 (a uniform random policy achieves a win rate < 2.57 times 10^{-15}), demonstrating the versatility of AlphaZero in approaching NP-hard environments.
What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
Efficiently tackling combinatorial reasoning problems, particularly the notorious NP-hard tasks, remains a significant challenge for AI research. Recent efforts have sought to enhance planning by incorporating hierarchical high-level search strategies, known as subgoal methods. While promising, their performance against traditional low-level planners is inconsistent, raising questions about their application contexts. In this study, we conduct an in-depth exploration of subgoal-planning methods for combinatorial reasoning. We identify the attributes pivotal for leveraging the advantages of high-level search: hard-to-learn value functions, complex action spaces, presence of dead ends in the environment, or using data collected from diverse experts. We propose a consistent evaluation methodology to achieve meaningful comparisons between methods and reevaluate the state-of-the-art algorithms.
Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks?
We consider decentralized optimization problems where one aims to minimize a sum of convex smooth objective functions distributed between nodes in the network. The links in the network can change from time to time. For the setting when the amount of changes is arbitrary, lower complexity bounds and corresponding optimal algorithms are known, and the consensus acceleration is not possible. However, in practice the magnitude of network changes may be limited. We derive lower communication complexity bounds for several regimes of velocity of networks changes. Moreover, we show how to obtain accelerated communication rates for a certain class of time-varying graphs using a specific consensus algorithm.
Graph Reinforcement Learning for Network Control via Bi-Level Optimization
Optimization problems over dynamic networks have been extensively studied and widely used in the past decades to formulate numerous real-world problems. However, (1) traditional optimization-based approaches do not scale to large networks, and (2) the design of good heuristics or approximation algorithms often requires significant manual trial-and-error. In this work, we argue that data-driven strategies can automate this process and learn efficient algorithms without compromising optimality. To do so, we present network control problems through the lens of reinforcement learning and propose a graph network-based framework to handle a broad class of problems. Instead of naively computing actions over high-dimensional graph elements, e.g., edges, we propose a bi-level formulation where we (1) specify a desired next state via RL, and (2) solve a convex program to best achieve it, leading to drastically improved scalability and performance. We further highlight a collection of desirable features to system designers, investigate design decisions, and present experiments on real-world control problems showing the utility, scalability, and flexibility of our framework.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via Planning and Learning
Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent and the agents have to sequientially decide the actions on their own without having access to a full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver.
AlphaResearch: Accelerating New Algorithm Discovery with Language Models
Large language models have made significant progress in complex but easy-to-verify problems, yet they still struggle with discovering the unknown. In this paper, we present AlphaResearch, an autonomous research agent designed to discover new algorithms on open-ended problems. To synergize the feasibility and innovation of the discovery process, we construct a novel dual research environment by combining the execution-based verify and simulated real-world peer review environment. AlphaResearch discovers new algorithm by iteratively running the following steps: (1) propose new ideas (2) verify the ideas in the dual research environment (3) optimize the research proposals for better performance. To promote a transparent evaluation process, we construct AlphaResearchComp, a new evaluation benchmark that includes an eight open-ended algorithmic problems competition, with each problem carefully curated and verified through executable pipelines, objective metrics, and reproducibility checks. AlphaResearch gets a 2/8 win rate in head-to-head comparison with human researchers, demonstrate the possibility of accelerating algorithm discovery with LLMs. Notably, the algorithm discovered by AlphaResearch on the ``packing circles'' problem achieves the best-of-known performance, surpassing the results of human researchers and strong baselines from recent work (e.g., AlphaEvolve). Additionally, we conduct a comprehensive analysis of the remaining challenges of the 6/8 failure cases, providing valuable insights for future research.
GrASP: Gradient-Based Affordance Selection for Planning
Planning with a learned model is arguably a key component of intelligence. There are several challenges in realizing such a component in large-scale reinforcement learning (RL) problems. One such challenge is dealing effectively with continuous action spaces when using tree-search planning (e.g., it is not feasible to consider every action even at just the root node of the tree). In this paper we present a method for selecting affordances useful for planning -- for learning which small number of actions/options from a continuous space of actions/options to consider in the tree-expansion process during planning. We consider affordances that are goal-and-state-conditional mappings to actions/options as well as unconditional affordances that simply select actions/options available in all states. Our selection method is gradient based: we compute gradients through the planning procedure to update the parameters of the function that represents affordances. Our empirical work shows that it is feasible to learn to select both primitive-action and option affordances, and that simultaneously learning to select affordances and planning with a learned value-equivalent model can outperform model-free RL.
Algorithm Discovery With LLMs: Evolutionary Search Meets Reinforcement Learning
Discovering efficient algorithms for solving complex problems has been an outstanding challenge in mathematics and computer science, requiring substantial human expertise over the years. Recent advancements in evolutionary search with large language models (LLMs) have shown promise in accelerating the discovery of algorithms across various domains, particularly in mathematics and optimization. However, existing approaches treat the LLM as a static generator, missing the opportunity to update the model with the signal obtained from evolutionary exploration. In this work, we propose to augment LLM-based evolutionary search by continuously refining the search operator - the LLM - through reinforcement learning (RL) fine-tuning. Our method leverages evolutionary search as an exploration strategy to discover improved algorithms, while RL optimizes the LLM policy based on these discoveries. Our experiments on three combinatorial optimization tasks - bin packing, traveling salesman, and the flatpack problem - show that combining RL and evolutionary search improves discovery efficiency of improved algorithms, showcasing the potential of RL-enhanced evolutionary strategies to assist computer scientists and mathematicians for more efficient algorithm design.
Accelerated Infeasibility Detection of Constrained Optimization and Fixed-Point Iterations
As first-order optimization methods become the method of choice for solving large-scale optimization problems, optimization solvers based on first-order algorithms are being built. Such general-purpose solvers must robustly detect infeasible or misspecified problem instances, but the computational complexity of first-order methods for doing so has yet to be formally studied. In this work, we characterize the optimal accelerated rate of infeasibility detection. We show that the standard fixed-point iteration achieves a O(1/k^2) and O(1/k) rates, respectively, on the normalized iterates and the fixed-point residual converging to the infimal displacement vector, while the accelerated fixed-point iteration achieves O(1/k^2) and mathcal{O}(1/k^2) rates. We then provide a matching complexity lower bound to establish that Theta(1/k^2) is indeed the optimal accelerated rate.
What type of inference is planning?
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about ``planning as inference''? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds exactly to a different set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games - the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled - our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.
RLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents
We introduce RLang, a domain-specific language (DSL) for communicating domain knowledge to an RL agent. Unlike existing RL DSLs that ground to single elements of a decision-making formalism (e.g., the reward function or policy), RLang can specify information about every element of a Markov decision process. We define precise syntax and grounding semantics for RLang, and provide a parser that grounds RLang programs to an algorithm-agnostic partial world model and policy that can be exploited by an RL agent. We provide a series of example RLang programs demonstrating how different RL methods can exploit the resulting knowledge, encompassing model-free and model-based tabular algorithms, policy gradient and value-based methods, hierarchical approaches, and deep methods.
Robo-taxi Fleet Coordination at Scale via Reinforcement Learning
Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD
Large Language Models for Combinatorial Optimization: A Systematic Review
This systematic review explores the application of Large Language Models (LLMs) in Combinatorial Optimization (CO). We report our findings using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conduct a literature search via Scopus and Google Scholar, examining over 2,000 publications. We assess publications against four inclusion and four exclusion criteria related to their language, research focus, publication year, and type. Eventually, we select 103 studies. We classify these studies into semantic categories and topics to provide a comprehensive overview of the field, including the tasks performed by LLMs, the architectures of LLMs, the existing datasets specifically designed for evaluating LLMs in CO, and the field of application. Finally, we identify future directions for leveraging LLMs in this field.
Gamification of Pure Exploration for Linear Bandits
We investigate an active pure-exploration setting, that includes best-arm identification, in the context of linear stochastic bandits. While asymptotically optimal algorithms exist for standard multi-arm bandits, the existence of such algorithms for the best-arm identification in linear bandits has been elusive despite several attempts to address it. First, we provide a thorough comparison and new insight over different notions of optimality in the linear case, including G-optimality, transductive optimality from optimal experimental design and asymptotic optimality. Second, we design the first asymptotically optimal algorithm for fixed-confidence pure exploration in linear bandits. As a consequence, our algorithm naturally bypasses the pitfall caused by a simple but difficult instance, that most prior algorithms had to be engineered to deal with explicitly. Finally, we avoid the need to fully solve an optimal design problem by providing an approach that entails an efficient implementation.
CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version)
This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size.
Bridging State and History Representations: Understanding Self-Predictive RL
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially observable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Adaptive Reward-Free Exploration
Reward-free exploration is a reinforcement learning setting studied by Jin et al. (2020), who address it by running several algorithms with regret guarantees in parallel. In our work, we instead give a more natural adaptive approach for reward-free exploration which directly reduces upper bounds on the maximum MDP estimation error. We show that, interestingly, our reward-free UCRL algorithm can be seen as a variant of an algorithm of Fiechter from 1994, originally proposed for a different objective that we call best-policy identification. We prove that RF-UCRL needs of order ({SAH^4}/{varepsilon^2})(log(1/δ) + S) episodes to output, with probability 1-δ, an varepsilon-approximation of the optimal policy for any reward function. This bound improves over existing sample-complexity bounds in both the small varepsilon and the small δ regimes. We further investigate the relative complexities of reward-free exploration and best-policy identification.
Breaking the Sorting Barrier for Directed Single-Source Shortest Paths
We give a deterministic O(mlog^{2/3}n)-time algorithm for single-source shortest paths (SSSP) on directed graphs with real non-negative edge weights in the comparison-addition model. This is the first result to break the O(m+nlog n) time bound of Dijkstra's algorithm on sparse graphs, showing that Dijkstra's algorithm is not optimal for SSSP.
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (delta,epsilon)-stationary point from O(epsilon^{-4}delta^{-1}) stochastic gradient queries to O(epsilon^{-3}delta^{-1}), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(epsilon^{-1.5}delta^{-0.5}). Our techniques also recover all optimal or best-known results for finding epsilon stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings.
Illuminating search spaces by mapping elites
Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering.
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization
A common pipeline in learning-based control is to iteratively estimate a model of system dynamics, and apply a trajectory optimization algorithm - e.g.~iLQR - on the learned model to minimize a target cost. This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems. We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing iLQR-like policy updates. We demonstrate that this algorithm attains sample complexity polynomial in relevant problem parameters, and, by synthesizing locally stabilizing gains, overcomes exponential dependence in problem horizon. Experimental results validate the performance of our algorithm, and compare to natural deep-learning baselines.
Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
We consider the combinatorial bandits problem with semi-bandit feedback under finite sampling budget constraints, in which the learner can carry out its action only for a limited number of times specified by an overall budget. The action is to choose a set of arms, whereupon feedback for each arm in the chosen set is received. Unlike existing works, we study this problem in a non-stochastic setting with subset-dependent feedback, i.e., the semi-bandit feedback received could be generated by an oblivious adversary and also might depend on the chosen set of arms. In addition, we consider a general feedback scenario covering both the numerical-based as well as preference-based case and introduce a sound theoretical framework for this setting guaranteeing sensible notions of optimal arms, which a learner seeks to find. We suggest a generic algorithm suitable to cover the full spectrum of conceivable arm elimination strategies from aggressive to conservative. Theoretical questions about the sufficient and necessary budget of the algorithm to find the best arm are answered and complemented by deriving lower bounds for any learning algorithm for this problem scenario.
Lost in Transmission: When and Why LLMs Fail to Reason Globally
Despite their many successes, transformer-based large language models (LLMs) continue to struggle with tasks that require complex reasoning over large parts of their input. We argue that these failures arise due to capacity limits on the accurate flow of information within LLMs. To formalize this issue, we introduce the bounded attention prefix oracle (BAPO) model, a new computational framework that models bandwidth constraints on attention heads, the mechanism for internal communication in LLMs. We show that several important reasoning problems like graph reachability require high communication bandwidth for BAPOs to solve; we call these problems BAPO-hard. Our experiments corroborate our theoretical predictions: GPT-4o, Claude, and Gemini succeed on BAPO-easy tasks and fail even on relatively small BAPO-hard tasks. BAPOs also reveal another benefit of chain of thought (CoT): we prove that breaking down a task using CoT can turn any BAPO-hard problem into a BAPO-easy one. Our results offer principled explanations for key LLM failures and suggest directions for architectures and inference methods that mitigate bandwidth limits.
BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, a algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions.
The Serial Scaling Hypothesis
While machine learning has advanced through massive parallelization, we identify a critical blind spot: some problems are fundamentally sequential. These "inherently serial" problems-from mathematical reasoning to physical simulations to sequential decision-making-require dependent computational steps that cannot be parallelized. Drawing from complexity theory, we formalize this distinction and demonstrate that current parallel-centric architectures face fundamental limitations on such tasks. We argue that recognizing the serial nature of computation holds profound implications on machine learning, model design, hardware development. As AI tackles increasingly complex reasoning, deliberately scaling serial computation-not just parallel computation-is essential for continued progress.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
LifeGPT: Topology-Agnostic Generative Pretrained Transformer Model for Cellular Automata
The Game of Life (Life), a well known algorithm within the broader class of cellular automata (CA), exhibits complex emergent dynamics, with extreme sensitivity to initial conditions. Modeling and predicting such intricate behavior without explicit knowledge of the system's underlying topology presents a significant challenge, motivating the development of algorithms that can generalize across various grid configurations and boundary conditions. We develop a decoder-only generative pretrained transformer model to solve this problem, showing that our model can simulate Life on a toroidal grid with no prior knowledge on the size of the grid, or its periodic boundary conditions (LifeGPT). LifeGPT is topology-agnostic with respect to its training data and our results show that a GPT model is capable of capturing the deterministic rules of a Turing-complete system with near-perfect accuracy, given sufficiently diverse training data. We also introduce the idea of an `autoregressive autoregressor' to recursively implement Life using LifeGPT. Our results pave the path towards true universal computation within a large language model (LLM) framework, synthesizing of mathematical analysis with natural language processing, and probing AI systems for situational awareness about the evolution of such algorithms without ever having to compute them. Similar GPTs could potentially solve inverse problems in multicellular self-assembly by extracting CA-compatible rulesets from real-world biological systems to create new predictive models, which would have significant consequences for the fields of bioinspired materials, tissue engineering, and architected materials design.
