new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

OneEncoder: A Lightweight Framework for Progressive Alignment of Modalities

Cross-modal alignment Learning integrates information from different modalities like text, image, audio and video to create unified models. This approach develops shared representations and learns correlations between modalities, enabling applications such as visual question answering and audiovisual content analysis. Current techniques rely on large modality-specific encoders, necessitating fine-tuning or training from scratch on vast aligned datasets (e.g., text-image, text-audio, image-audio). This approach has limitations: (i) it is very expensive due to the need for training large encoders on extensive datasets, (ii) acquiring aligned large paired datasets is challenging, and (iii) adding new modalities requires retraining the entire framework to incorporate these modalities. To address these issues, we propose OneEncoder, a lightweight framework that progressively represents and aligns four modalities (image, text, audio, video). Initially, we train a lightweight Universal Projection module (UP) to align image and text modalities. Then, we freeze the pretrained UP and progressively align future modalities to those already aligned. OneEncoder operates efficiently and cost-effectively, even in scenarios where vast aligned datasets are unavailable, due to its lightweight design. Trained on small paired datasets, it shows strong performance in tasks like classification, querying, and visual question answering, surpassing methods that rely on large datasets and specialized encoders.

  • 3 authors
·
Sep 17, 2024

I2V-Adapter: A General Image-to-Video Adapter for Video Diffusion Models

In the rapidly evolving domain of digital content generation, the focus has shifted from text-to-image (T2I) models to more advanced video diffusion models, notably text-to-video (T2V) and image-to-video (I2V). This paper addresses the intricate challenge posed by I2V: converting static images into dynamic, lifelike video sequences while preserving the original image fidelity. Traditional methods typically involve integrating entire images into diffusion processes or using pretrained encoders for cross attention. However, these approaches often necessitate altering the fundamental weights of T2I models, thereby restricting their reusability. We introduce a novel solution, namely I2V-Adapter, designed to overcome such limitations. Our approach preserves the structural integrity of T2I models and their inherent motion modules. The I2V-Adapter operates by processing noised video frames in parallel with the input image, utilizing a lightweight adapter module. This module acts as a bridge, efficiently linking the input to the model's self-attention mechanism, thus maintaining spatial details without requiring structural changes to the T2I model. Moreover, I2V-Adapter requires only a fraction of the parameters of conventional models and ensures compatibility with existing community-driven T2I models and controlling tools. Our experimental results demonstrate I2V-Adapter's capability to produce high-quality video outputs. This performance, coupled with its versatility and reduced need for trainable parameters, represents a substantial advancement in the field of AI-driven video generation, particularly for creative applications.

  • 11 authors
·
Dec 27, 2023 1

HiVG: Hierarchical Multimodal Fine-grained Modulation for Visual Grounding

Visual grounding, which aims to ground a visual region via natural language, is a task that heavily relies on cross-modal alignment. Existing works utilized uni-modal pre-trained models to transfer visual/linguistic knowledge separately while ignoring the multimodal corresponding information. Motivated by recent advancements in contrastive language-image pre-training and low-rank adaptation (LoRA) methods, we aim to solve the grounding task based on multimodal pre-training. However, there exists significant task gaps between pre-training and grounding. Therefore, to address these gaps, we propose a concise and efficient hierarchical multimodal fine-grained modulation framework, namely HiVG. Specifically, HiVG consists of a multi-layer adaptive cross-modal bridge and a hierarchical multimodal low-rank adaptation (Hi LoRA) paradigm. The cross-modal bridge can address the inconsistency between visual features and those required for grounding, and establish a connection between multi-level visual and text features. Hi LoRA prevents the accumulation of perceptual errors by adapting the cross-modal features from shallow to deep layers in a hierarchical manner. Experimental results on five datasets demonstrate the effectiveness of our approach and showcase the significant grounding capabilities as well as promising energy efficiency advantages. The project page: https://github.com/linhuixiao/HiVG.

  • 5 authors
·
Apr 20, 2024

M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action Recognition

Recently, the rise of large-scale vision-language pretrained models like CLIP, coupled with the technology of Parameter-Efficient FineTuning (PEFT), has captured substantial attraction in video action recognition. Nevertheless, prevailing approaches tend to prioritize strong supervised performance at the expense of compromising the models' generalization capabilities during transfer. In this paper, we introduce a novel Multimodal, Multi-task CLIP adapting framework named \name to address these challenges, preserving both high supervised performance and robust transferability. Firstly, to enhance the individual modality architectures, we introduce multimodal adapters to both the visual and text branches. Specifically, we design a novel visual TED-Adapter, that performs global Temporal Enhancement and local temporal Difference modeling to improve the temporal representation capabilities of the visual encoder. Moreover, we adopt text encoder adapters to strengthen the learning of semantic label information. Secondly, we design a multi-task decoder with a rich set of supervisory signals to adeptly satisfy the need for strong supervised performance and generalization within a multimodal framework. Experimental results validate the efficacy of our approach, demonstrating exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.

  • 9 authors
·
Jan 21, 2024

IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models

Recent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompt as it often involves complex prompt engineering. An alternative to text prompt is image prompt, as the saying goes: "an image is worth a thousand words". Although existing methods of direct fine-tuning from pretrained models are effective, they require large computing resources and are not compatible with other base models, text prompt, and structural controls. In this paper, we present IP-Adapter, an effective and lightweight adapter to achieve image prompt capability for the pretrained text-to-image diffusion models. The key design of our IP-Adapter is decoupled cross-attention mechanism that separates cross-attention layers for text features and image features. Despite the simplicity of our method, an IP-Adapter with only 22M parameters can achieve comparable or even better performance to a fully fine-tuned image prompt model. As we freeze the pretrained diffusion model, the proposed IP-Adapter can be generalized not only to other custom models fine-tuned from the same base model, but also to controllable generation using existing controllable tools. With the benefit of the decoupled cross-attention strategy, the image prompt can also work well with the text prompt to achieve multimodal image generation. The project page is available at https://ip-adapter.github.io.

  • 5 authors
·
Aug 13, 2023 2

BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning

Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BridgeTower, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BridgeTower achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BridgeTower achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BridgeTower achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets. Code and checkpoints are available at https://github.com/microsoft/BridgeTower.

  • 6 authors
·
Jun 17, 2022

ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities

In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at https://github.com/OFA-Sys/ONE-PEACE.

  • 8 authors
·
May 18, 2023

VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model

Vision-Language-Action (VLA) models typically bridge the gap between perceptual and action spaces by pre-training a large-scale Vision-Language Model (VLM) on robotic data. While this approach greatly enhances performance, it also incurs significant training costs. In this paper, we investigate how to effectively bridge vision-language (VL) representations to action (A). We introduce VLA-Adapter, a novel paradigm designed to reduce the reliance of VLA models on large-scale VLMs and extensive pre-training. To this end, we first systematically analyze the effectiveness of various VL conditions and present key findings on which conditions are essential for bridging perception and action spaces. Based on these insights, we propose a lightweight Policy module with Bridge Attention, which autonomously injects the optimal condition into the action space. In this way, our method achieves high performance using only a 0.5B-parameter backbone, without any robotic data pre-training. Extensive experiments on both simulated and real-world robotic benchmarks demonstrate that VLA-Adapter not only achieves state-of-the-art level performance, but also offers the fast inference speed reported to date. Furthermore, thanks to the proposed advanced bridging paradigm, VLA-Adapter enables the training of a powerful VLA model in just 8 hours on a single consumer-grade GPU, greatly lowering the barrier to deploying the VLA model. Project page: https://vla-adapter.github.io/.

  • 16 authors
·
Sep 11, 2025 7

AVROBUSTBENCH: Benchmarking the Robustness of Audio-Visual Recognition Models at Test-Time

While recent audio-visual models have demonstrated impressive performance, their robustness to distributional shifts at test-time remains not fully understood. Existing robustness benchmarks mainly focus on single modalities, making them insufficient for thoroughly assessing the robustness of audio-visual models. Motivated by real-world scenarios where shifts can occur simultaneously in both audio and visual modalities, we introduce AVROBUSTBENCH, a comprehensive benchmark designed to evaluate the test-time robustness of audio-visual recognition models. AVROBUSTBENCH comprises four audio-visual benchmark datasets, AUDIOSET-2C, VGGSOUND-2C, KINETICS-2C, and EPICKITCHENS-2C, each incorporating 75 bimodal audio-visual corruptions that are co-occurring and correlated. Through extensive evaluations, we observe that state-of-the-art supervised and self-supervised audio-visual models exhibit declining robustness as corruption severity increases. Furthermore, online test-time adaptation (TTA) methods, on VGGSOUND-2C and KINETICS-2C, offer minimal improvements in performance under bimodal corruptions. We further propose AV2C, a simple TTA approach enabling on-the-fly cross-modal fusion by penalizing high-entropy samples, which achieves improvements on VGGSOUND-2C. We hope that AVROBUSTBENCH will steer the development of more effective and robust audio-visual TTA approaches. Our code is available https://github.com/sarthaxxxxx/AV-C-Robustness-Benchmark{here}.

  • 7 authors
·
May 30, 2025

Flowing from Words to Pixels: A Framework for Cross-Modality Evolution

Diffusion models, and their generalization, flow matching, have had a remarkable impact on the field of media generation. Here, the conventional approach is to learn the complex mapping from a simple source distribution of Gaussian noise to the target media distribution. For cross-modal tasks such as text-to-image generation, this same mapping from noise to image is learnt whilst including a conditioning mechanism in the model. One key and thus far relatively unexplored feature of flow matching is that, unlike Diffusion models, they are not constrained for the source distribution to be noise. Hence, in this paper, we propose a paradigm shift, and ask the question of whether we can instead train flow matching models to learn a direct mapping from the distribution of one modality to the distribution of another, thus obviating the need for both the noise distribution and conditioning mechanism. We present a general and simple framework, CrossFlow, for cross-modal flow matching. We show the importance of applying Variational Encoders to the input data, and introduce a method to enable Classifier-free guidance. Surprisingly, for text-to-image, CrossFlow with a vanilla transformer without cross attention slightly outperforms standard flow matching, and we show that it scales better with training steps and model size, while also allowing for interesting latent arithmetic which results in semantically meaningful edits in the output space. To demonstrate the generalizability of our approach, we also show that CrossFlow is on par with or outperforms the state-of-the-art for various cross-modal / intra-modal mapping tasks, viz. image captioning, depth estimation, and image super-resolution. We hope this paper contributes to accelerating progress in cross-modal media generation.

  • 5 authors
·
Dec 19, 2024 4

MINIMA: Modality Invariant Image Matching

Image matching for both cross-view and cross-modality plays a critical role in multimodal perception. In practice, the modality gap caused by different imaging systems/styles poses great challenges to the matching task. Existing works try to extract invariant features for specific modalities and train on limited datasets, showing poor generalization. In this paper, we present MINIMA, a unified image matching framework for multiple cross-modal cases. Without pursuing fancy modules, our MINIMA aims to enhance universal performance from the perspective of data scaling up. For such purpose, we propose a simple yet effective data engine that can freely produce a large dataset containing multiple modalities, rich scenarios, and accurate matching labels. Specifically, we scale up the modalities from cheap but rich RGB-only matching data, by means of generative models. Under this setting, the matching labels and rich diversity of the RGB dataset are well inherited by the generated multimodal data. Benefiting from this, we construct MD-syn, a new comprehensive dataset that fills the data gap for general multimodal image matching. With MD-syn, we can directly train any advanced matching pipeline on randomly selected modality pairs to obtain cross-modal ability. Extensive experiments on in-domain and zero-shot matching tasks, including 19 cross-modal cases, demonstrate that our MINIMA can significantly outperform the baselines and even surpass modality-specific methods. The dataset and code are available at https://github.com/LSXI7/MINIMA .

  • 6 authors
·
Dec 26, 2024 2

OmniTalker: Real-Time Text-Driven Talking Head Generation with In-Context Audio-Visual Style Replication

Recent years have witnessed remarkable advances in talking head generation, owing to its potential to revolutionize the human-AI interaction from text interfaces into realistic video chats. However, research on text-driven talking heads remains underexplored, with existing methods predominantly adopting a cascaded pipeline that combines TTS systems with audio-driven talking head models. This conventional pipeline not only introduces system complexity and latency overhead but also fundamentally suffers from asynchronous audiovisual output and stylistic discrepancies between generated speech and visual expressions. To address these limitations, we introduce OmniTalker, an end-to-end unified framework that simultaneously generates synchronized speech and talking head videos from text and reference video in real-time zero-shot scenarios, while preserving both speech style and facial styles. The framework employs a dual-branch diffusion transformer architecture: the audio branch synthesizes mel-spectrograms from text, while the visual branch predicts fine-grained head poses and facial dynamics. To bridge modalities, we introduce a novel audio-visual fusion module that integrates cross-modal information to ensure temporal synchronization and stylistic coherence between audio and visual outputs. Furthermore, our in-context reference learning module effectively captures both speech and facial style characteristics from a single reference video without introducing an extra style extracting module. To the best of our knowledge, OmniTalker presents the first unified framework that jointly models speech style and facial style in a zero-shot setting, achieving real-time inference speed of 25 FPS. Extensive experiments demonstrate that our method surpasses existing approaches in generation quality, particularly excelling in style preservation and audio-video synchronization.

  • 6 authors
·
Apr 3, 2025 1

Cross-Modal Attribute Insertions for Assessing the Robustness of Vision-and-Language Learning

The robustness of multimodal deep learning models to realistic changes in the input text is critical for their applicability to important tasks such as text-to-image retrieval and cross-modal entailment. To measure robustness, several existing approaches edit the text data, but do so without leveraging the cross-modal information present in multimodal data. Information from the visual modality, such as color, size, and shape, provide additional attributes that users can include in their inputs. Thus, we propose cross-modal attribute insertions as a realistic perturbation strategy for vision-and-language data that inserts visual attributes of the objects in the image into the corresponding text (e.g., "girl on a chair" to "little girl on a wooden chair"). Our proposed approach for cross-modal attribute insertions is modular, controllable, and task-agnostic. We find that augmenting input text using cross-modal insertions causes state-of-the-art approaches for text-to-image retrieval and cross-modal entailment to perform poorly, resulting in relative drops of 15% in MRR and 20% in F_1 score, respectively. Crowd-sourced annotations demonstrate that cross-modal insertions lead to higher quality augmentations for multimodal data than augmentations using text-only data, and are equivalent in quality to original examples. We release the code to encourage robustness evaluations of deep vision-and-language models: https://github.com/claws-lab/multimodal-robustness-xmai.

  • 3 authors
·
Jun 19, 2023

PILL: Plug Into LLM with Adapter Expert and Attention Gate

Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.

  • 4 authors
·
Nov 3, 2023

Split & Merge: Unlocking the Potential of Visual Adapters via Sparse Training

With the rapid growth in the scale of pre-trained foundation models, parameter-efficient fine-tuning techniques have gained significant attention, among which Adapter Tuning is the most widely used. Despite achieving efficiency, Adapter Tuning still underperforms full fine-tuning, and the performance improves at the cost of an increase in parameters. Recent efforts address this issue by pruning the original adapters, but it also introduces training instability and suboptimal performance on certain datasets. Motivated by this, we propose Mixture of Sparse Adapters, or MoSA, as a novel Adapter Tuning method to fully unleash the potential of each parameter in the adapter. We first split the standard adapter into multiple non-overlapping modules, then stochastically activate modules for sparse training, and finally merge them to form a complete adapter after tuning. In this way, MoSA can achieve significantly better performance than standard adapters without any additional computational or storage overhead. Furthermore, we propose a hierarchical sparse strategy to better leverage limited training data. Extensive experiments on a series of 27 visual tasks demonstrate that MoSA consistently outperforms other Adapter Tuning methods as well as other baselines by a significant margin. Furthermore, in two challenging scenarios with low-resource and multi-task settings, MoSA achieves satisfactory results, further demonstrating the effectiveness of our design. Our code will be released.

  • 5 authors
·
Dec 5, 2023

UniAVGen: Unified Audio and Video Generation with Asymmetric Cross-Modal Interactions

Due to the lack of effective cross-modal modeling, existing open-source audio-video generation methods often exhibit compromised lip synchronization and insufficient semantic consistency. To mitigate these drawbacks, we propose UniAVGen, a unified framework for joint audio and video generation. UniAVGen is anchored in a dual-branch joint synthesis architecture, incorporating two parallel Diffusion Transformers (DiTs) to build a cohesive cross-modal latent space. At its heart lies an Asymmetric Cross-Modal Interaction mechanism, which enables bidirectional, temporally aligned cross-attention, thus ensuring precise spatiotemporal synchronization and semantic consistency. Furthermore, this cross-modal interaction is augmented by a Face-Aware Modulation module, which dynamically prioritizes salient regions in the interaction process. To enhance generative fidelity during inference, we additionally introduce Modality-Aware Classifier-Free Guidance, a novel strategy that explicitly amplifies cross-modal correlation signals. Notably, UniAVGen's robust joint synthesis design enables seamless unification of pivotal audio-video tasks within a single model, such as joint audio-video generation and continuation, video-to-audio dubbing, and audio-driven video synthesis. Comprehensive experiments validate that, with far fewer training samples (1.3M vs. 30.1M), UniAVGen delivers overall advantages in audio-video synchronization, timbre consistency, and emotion consistency.

NJU Nanjing University
·
Nov 5, 2025 6

Efficient Image Captioning for Edge Devices

Recent years have witnessed the rapid progress of image captioning. However, the demands for large memory storage and heavy computational burden prevent these captioning models from being deployed on mobile devices. The main obstacles lie in the heavyweight visual feature extractors (i.e., object detectors) and complicated cross-modal fusion networks. To this end, we propose LightCap, a lightweight image captioner for resource-limited devices. The core design is built on the recent CLIP model for efficient image captioning. To be specific, on the one hand, we leverage the CLIP model to extract the compact grid features without relying on the time-consuming object detectors. On the other hand, we transfer the image-text retrieval design of CLIP to image captioning scenarios by devising a novel visual concept extractor and a cross-modal modulator. We further optimize the cross-modal fusion model and parallel prediction heads via sequential and ensemble distillations. With the carefully designed architecture, our model merely contains 40M parameters, saving the model size by more than 75% and the FLOPs by more than 98% in comparison with the current state-of-the-art methods. In spite of the low capacity, our model still exhibits state-of-the-art performance on prevalent datasets, e.g., 136.6 CIDEr on COCO Karpathy test split. Testing on the smartphone with only a single CPU, the proposed LightCap exhibits a fast inference speed of 188ms per image, which is ready for practical applications.

  • 7 authors
·
Dec 17, 2022

CrossGET: Cross-Guided Ensemble of Tokens for Accelerating Vision-Language Transformers

Recent vision-language models have achieved tremendous advances. However, their computational costs are also escalating dramatically, making model acceleration exceedingly critical. To pursue more efficient vision-language Transformers, this paper introduces Cross-Guided Ensemble of Tokens (CrossGET), a general acceleration framework for vision-language Transformers. This framework adaptively combines tokens in real-time during inference, significantly reducing computational costs while maintaining high performance. CrossGET features two primary innovations: 1) Cross-Guided Matching and Ensemble. CrossGET leverages cross-modal guided token matching and ensemble to effectively utilize cross-modal information, achieving wider applicability across both modality-independent models, e.g., CLIP, and modality-dependent ones, e.g., BLIP2. 2) Complete-Graph Soft Matching. CrossGET introduces an algorithm for the token-matching mechanism, ensuring reliable matching results while facilitating parallelizability and high efficiency. Extensive experiments have been conducted on various vision-language tasks, such as image-text retrieval, visual reasoning, image captioning, and visual question answering. The performance on both classic multimodal architectures and emerging multimodal LLMs demonstrates the framework's effectiveness and versatility. The code is available at https://github.com/sdc17/CrossGET.

  • 6 authors
·
May 27, 2023

FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios

Action customization involves generating videos where the subject performs actions dictated by input control signals. Current methods use pose-guided or global motion customization but are limited by strict constraints on spatial structure, such as layout, skeleton, and viewpoint consistency, reducing adaptability across diverse subjects and scenarios. To overcome these limitations, we propose FlexiAct, which transfers actions from a reference video to an arbitrary target image. Unlike existing methods, FlexiAct allows for variations in layout, viewpoint, and skeletal structure between the subject of the reference video and the target image, while maintaining identity consistency. Achieving this requires precise action control, spatial structure adaptation, and consistency preservation. To this end, we introduce RefAdapter, a lightweight image-conditioned adapter that excels in spatial adaptation and consistency preservation, surpassing existing methods in balancing appearance consistency and structural flexibility. Additionally, based on our observations, the denoising process exhibits varying levels of attention to motion (low frequency) and appearance details (high frequency) at different timesteps. So we propose FAE (Frequency-aware Action Extraction), which, unlike existing methods that rely on separate spatial-temporal architectures, directly achieves action extraction during the denoising process. Experiments demonstrate that our method effectively transfers actions to subjects with diverse layouts, skeletons, and viewpoints. We release our code and model weights to support further research at https://shiyi-zh0408.github.io/projectpages/FlexiAct/

  • 5 authors
·
May 6, 2025 1

GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning

Cross-modal metric learning is a prominent research topic that bridges the semantic heterogeneity between vision and language. Existing methods frequently utilize simple cosine or complex distance metrics to transform the pairwise features into a similarity score, which suffers from an inadequate or inefficient capability for distance measurements. Consequently, we propose a Generalized Structural Sparse Function to dynamically capture thorough and powerful relationships across modalities for pair-wise similarity learning while remaining concise but efficient. Specifically, the distance metric delicately encapsulates two formats of diagonal and block-diagonal terms, automatically distinguishing and highlighting the cross-channel relevancy and dependency inside a structured and organized topology. Hence, it thereby empowers itself to adapt to the optimal matching patterns between the paired features and reaches a sweet spot between model complexity and capability. Extensive experiments on cross-modal and two extra uni-modal retrieval tasks (image-text retrieval, person re-identification, fine-grained image retrieval) have validated its superiority and flexibility over various popular retrieval frameworks. More importantly, we further discover that it can be seamlessly incorporated into multiple application scenarios, and demonstrates promising prospects from Attention Mechanism to Knowledge Distillation in a plug-and-play manner. Our code is publicly available at: https://github.com/Paranioar/GSSF.

  • 6 authors
·
Oct 19, 2024

X-Cross: Dynamic Integration of Language Models for Cross-Domain Sequential Recommendation

As new products are emerging daily, recommendation systems are required to quickly adapt to possible new domains without needing extensive retraining. This work presents ``X-Cross'' -- a novel cross-domain sequential-recommendation model that recommends products in new domains by integrating several domain-specific language models; each model is fine-tuned with low-rank adapters (LoRA). Given a recommendation prompt, operating layer by layer, X-Cross dynamically refines the representation of each source language model by integrating knowledge from all other models. These refined representations are propagated from one layer to the next, leveraging the activations from each domain adapter to ensure domain-specific nuances are preserved while enabling adaptability across domains. Using Amazon datasets for sequential recommendation, X-Cross achieves performance comparable to a model that is fine-tuned with LoRA, while using only 25% of the additional parameters. In cross-domain tasks, such as adapting from Toys domain to Tools, Electronics or Sports, X-Cross demonstrates robust performance, while requiring about 50%-75% less fine-tuning data than LoRA to make fine-tuning effective. Furthermore, X-Cross achieves significant improvement in accuracy over alternative cross-domain baselines. Overall, X-Cross enables scalable and adaptive cross-domain recommendations, reducing computational overhead and providing an efficient solution for data-constrained environments.

  • 5 authors
·
Apr 29, 2025 3

Taming Text-to-Sounding Video Generation via Advanced Modality Condition and Interaction

This study focuses on a challenging yet promising task, Text-to-Sounding-Video (T2SV) generation, which aims to generate a video with synchronized audio from text conditions, meanwhile ensuring both modalities are aligned with text. Despite progress in joint audio-video training, two critical challenges still remain unaddressed: (1) a single, shared text caption where the text for video is equal to the text for audio often creates modal interference, confusing the pretrained backbones, and (2) the optimal mechanism for cross-modal feature interaction remains unclear. To address these challenges, we first propose the Hierarchical Visual-Grounded Captioning (HVGC) framework that generates pairs of disentangled captions, a video caption, and an audio caption, eliminating interference at the conditioning stage. Based on HVGC, we further introduce BridgeDiT, a novel dual-tower diffusion transformer, which employs a Dual CrossAttention (DCA) mechanism that acts as a robust ``bridge" to enable a symmetric, bidirectional exchange of information, achieving both semantic and temporal synchronization. Extensive experiments on three benchmark datasets, supported by human evaluations, demonstrate that our method achieves state-of-the-art results on most metrics. Comprehensive ablation studies further validate the effectiveness of our contributions, offering key insights for the future T2SV task. All the codes and checkpoints will be publicly released.

apple Apple
·
Oct 3, 2025 2

Sparse High Rank Adapters

Low Rank Adaptation (LoRA) has gained massive attention in the recent generative AI research. One of the main advantages of LoRA is its ability to be fused with pretrained models, adding no overhead during inference. However, from a mobile deployment standpoint, we can either avoid inference overhead in the fused mode but lose the ability to switch adapters rapidly, or suffer significant (up to 30% higher) inference latency while enabling rapid switching in the unfused mode. LoRA also exhibits concept-loss when multiple adapters are used concurrently. In this paper, we propose Sparse High Rank Adapters (SHiRA), a new paradigm which incurs no inference overhead, enables rapid switching, and significantly reduces concept-loss. Specifically, SHiRA can be trained by directly tuning only 1-2% of the base model weights while leaving others unchanged. This results in a highly sparse adapter which can be switched directly in the fused mode. We further provide theoretical and empirical insights on how high sparsity in SHiRA can aid multi-adapter fusion by reducing concept loss. Our extensive experiments on LVMs and LLMs demonstrate that finetuning only a small fraction of the parameters in the base model significantly outperforms LoRA while enabling both rapid switching and multi-adapter fusion. Finally, we provide a latency- and memory-efficient SHiRA implementation based on Parameter-Efficient Finetuning (PEFT) Library which trains at nearly the same speed as LoRA while consuming up to 16% lower peak GPU memory, thus making SHiRA easy to adopt for practical use cases. To demonstrate rapid switching benefits during inference, we show that loading SHiRA on a base model can be 5x-16x faster than LoRA fusion on a CPU.

  • 12 authors
·
Jun 18, 2024

SUMMIT: Source-Free Adaptation of Uni-Modal Models to Multi-Modal Targets

Scene understanding using multi-modal data is necessary in many applications, e.g., autonomous navigation. To achieve this in a variety of situations, existing models must be able to adapt to shifting data distributions without arduous data annotation. Current approaches assume that the source data is available during adaptation and that the source consists of paired multi-modal data. Both these assumptions may be problematic for many applications. Source data may not be available due to privacy, security, or economic concerns. Assuming the existence of paired multi-modal data for training also entails significant data collection costs and fails to take advantage of widely available freely distributed pre-trained uni-modal models. In this work, we relax both of these assumptions by addressing the problem of adapting a set of models trained independently on uni-modal data to a target domain consisting of unlabeled multi-modal data, without having access to the original source dataset. Our proposed approach solves this problem through a switching framework which automatically chooses between two complementary methods of cross-modal pseudo-label fusion -- agreement filtering and entropy weighting -- based on the estimated domain gap. We demonstrate our work on the semantic segmentation problem. Experiments across seven challenging adaptation scenarios verify the efficacy of our approach, achieving results comparable to, and in some cases outperforming, methods which assume access to source data. Our method achieves an improvement in mIoU of up to 12% over competing baselines. Our code is publicly available at https://github.com/csimo005/SUMMIT.

  • 6 authors
·
Aug 22, 2023

VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks

Recently, fine-tuning language models pre-trained on large text corpora have provided huge improvements on vision-and-language (V&L) tasks as well as on pure language tasks. However, fine-tuning the entire parameter set of pre-trained models becomes impractical since the model size is growing rapidly. Hence, in this paper, we introduce adapter-based parameter-efficient transfer learning techniques to V&L models such as VL-BART and VLT5. We evaluate our methods in a unified multi-task setup on both image-text and video-text benchmarks. For the image-text tasks, we use four diverse V&L datasets: VQAv2, GQA, NLVR2 , and MSCOCO image captioning. For video-text tasks, we use TVQA, How2QA, TVC, and YC2C. With careful training and thorough experiments, we benchmark three popular adapter-based methods (Adapter, Hyperformer, Compacter) against the standard full fine-tuning and the recently proposed prompt-tuning approach. We also enhance the efficiency and performance of adapters by sharing their weights to attain knowledge across tasks. Our results demonstrate that training the adapter with the weight-sharing technique (4.18% of total parameters for image-text tasks and 3.39% for video-text tasks) can match the performance of fine-tuning the entire model. Lastly, we present a comprehensive analysis including the combination of adapter and task-specific prompts and the impact of V&L pre-training on adapters. Our code is available at: https://github.com/ylsung/VL_adapter.

  • 3 authors
·
Dec 13, 2021

Towards Real-world Event-guided Low-light Video Enhancement and Deblurring

In low-light conditions, capturing videos with frame-based cameras often requires long exposure times, resulting in motion blur and reduced visibility. While frame-based motion deblurring and low-light enhancement have been studied, they still pose significant challenges. Event cameras have emerged as a promising solution for improving image quality in low-light environments and addressing motion blur. They provide two key advantages: capturing scene details well even in low light due to their high dynamic range, and effectively capturing motion information during long exposures due to their high temporal resolution. Despite efforts to tackle low-light enhancement and motion deblurring using event cameras separately, previous work has not addressed both simultaneously. To explore the joint task, we first establish real-world datasets for event-guided low-light enhancement and deblurring using a hybrid camera system based on beam splitters. Subsequently, we introduce an end-to-end framework to effectively handle these tasks. Our framework incorporates a module to efficiently leverage temporal information from events and frames. Furthermore, we propose a module to utilize cross-modal feature information to employ a low-pass filter for noise suppression while enhancing the main structural information. Our proposed method significantly outperforms existing approaches in addressing the joint task. Our project pages are available at https://github.com/intelpro/ELEDNet.

  • 5 authors
·
Aug 27, 2024

3MDiT: Unified Tri-Modal Diffusion Transformer for Text-Driven Synchronized Audio-Video Generation

Text-to-video (T2V) diffusion models have recently achieved impressive visual quality, yet most systems still generate silent clips and treat audio as a secondary concern. Existing audio-video generation pipelines typically decompose the task into cascaded stages, which accumulate errors across modalities and are trained under separate objectives. Recent joint audio-video generators alleviate this issue but often rely on dual-tower architectures with ad-hoc cross-modal bridges and static, single-shot text conditioning, making it difficult to both reuse T2V backbones and to reason about how audio, video and language interact over time. To address these challenges, we propose 3MDiT, a unified tri-modal diffusion transformer for text-driven synchronized audio-video generation. Our framework models video, audio and text as jointly evolving streams: an isomorphic audio branch mirrors a T2V backbone, tri-modal omni-blocks perform feature-level fusion across the three modalities, and an optional dynamic text conditioning mechanism updates the text representation as audio and video evidence co-evolve. The design supports two regimes: training from scratch on audio-video data, and orthogonally adapting a pretrained T2V model without modifying its backbone. Experiments show that our approach generates high-quality videos and realistic audio while consistently improving audio-video synchronization and tri-modal alignment across a range of quantitative metrics.

  • 11 authors
·
Nov 26, 2025

UNIC-Adapter: Unified Image-instruction Adapter with Multi-modal Transformer for Image Generation

Recently, text-to-image generation models have achieved remarkable advancements, particularly with diffusion models facilitating high-quality image synthesis from textual descriptions. However, these models often struggle with achieving precise control over pixel-level layouts, object appearances, and global styles when using text prompts alone. To mitigate this issue, previous works introduce conditional images as auxiliary inputs for image generation, enhancing control but typically necessitating specialized models tailored to different types of reference inputs. In this paper, we explore a new approach to unify controllable generation within a single framework. Specifically, we propose the unified image-instruction adapter (UNIC-Adapter) built on the Multi-Modal-Diffusion Transformer architecture, to enable flexible and controllable generation across diverse conditions without the need for multiple specialized models. Our UNIC-Adapter effectively extracts multi-modal instruction information by incorporating both conditional images and task instructions, injecting this information into the image generation process through a cross-attention mechanism enhanced by Rotary Position Embedding. Experimental results across a variety of tasks, including pixel-level spatial control, subject-driven image generation, and style-image-based image synthesis, demonstrate the effectiveness of our UNIC-Adapter in unified controllable image generation.

  • 10 authors
·
Dec 25, 2024

TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance

In this paper, we propose a novel cross-modal distillation method, called TinyCLIP, for large-scale language-image pre-trained models. The method introduces two core techniques: affinity mimicking and weight inheritance. Affinity mimicking explores the interaction between modalities during distillation, enabling student models to mimic teachers' behavior of learning cross-modal feature alignment in a visual-linguistic affinity space. Weight inheritance transmits the pre-trained weights from the teacher models to their student counterparts to improve distillation efficiency. Moreover, we extend the method into a multi-stage progressive distillation to mitigate the loss of informative weights during extreme compression. Comprehensive experiments demonstrate the efficacy of TinyCLIP, showing that it can reduce the size of the pre-trained CLIP ViT-B/32 by 50%, while maintaining comparable zero-shot performance. While aiming for comparable performance, distillation with weight inheritance can speed up the training by 1.4 - 7.8 times compared to training from scratch. Moreover, our TinyCLIP ViT-8M/16, trained on YFCC-15M, achieves an impressive zero-shot top-1 accuracy of 41.1% on ImageNet, surpassing the original CLIP ViT-B/16 by 3.5% while utilizing only 8.9% parameters. Finally, we demonstrate the good transferability of TinyCLIP in various downstream tasks. Code and models will be open-sourced at https://aka.ms/tinyclip.

  • 13 authors
·
Sep 21, 2023

XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models

Omni-modal large language models (OLLMs) aim to unify audio, vision, and text understanding within a single framework. While existing benchmarks primarily evaluate general cross-modal question-answering ability, it remains unclear whether OLLMs achieve modality-invariant reasoning or exhibit modality-specific biases. We introduce XModBench, a large-scale tri-modal benchmark explicitly designed to measure cross-modal consistency. XModBench comprises 60,828 multiple-choice questions spanning five task families and systematically covers all six modality compositions in question-answer pairs, enabling fine-grained diagnosis of an OLLM's modality-invariant reasoning, modality disparity, and directional imbalance. Experiments show that even the strongest model, Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less than 60% accuracy, (ii) reveals persistent modality disparities, with performance dropping substantially when the same semantic content is conveyed through audio rather than text, and (iii) shows systematic directional imbalance, exhibiting lower consistency when vision serves as context compared to text. These findings indicate that current OLLMs remain far from truly modality-invariant reasoning and position XModBench as a fundamental diagnostic tool for evaluating and improving cross-modal competence. All data and evaluation tools will be available at https://xingruiwang.github.io/projects/XModBench/.

amd AMD
·
Oct 16, 2025

VLSM-Adapter: Finetuning Vision-Language Segmentation Efficiently with Lightweight Blocks

Foundation Vision-Language Models (VLMs) trained using large-scale open-domain images and text pairs have recently been adapted to develop Vision-Language Segmentation Models (VLSMs) that allow providing text prompts during inference to guide image segmentation. If robust and powerful VLSMs can be built for medical images, it could aid medical professionals in many clinical tasks where they must spend substantial time delineating the target structure of interest. VLSMs for medical images resort to fine-tuning base VLM or VLSM pretrained on open-domain natural image datasets due to fewer annotated medical image datasets; this fine-tuning is resource-consuming and expensive as it usually requires updating all or a significant fraction of the pretrained parameters. Recently, lightweight blocks called adapters have been proposed in VLMs that keep the pretrained model frozen and only train adapters during fine-tuning, substantially reducing the computing resources required. We introduce a novel adapter, VLSM-Adapter, that can fine-tune pretrained vision-language segmentation models using transformer encoders. Our experiments in widely used CLIP-based segmentation models show that with only 3 million trainable parameters, the VLSM-Adapter outperforms state-of-the-art and is comparable to the upper bound end-to-end fine-tuning. The source code is available at: https://github.com/naamiinepal/vlsm-adapter.

  • 4 authors
·
May 9, 2024

MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models

Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.

  • 9 authors
·
Aug 13, 2025

EMMA: Efficient Visual Alignment in Multi-Modal LLMs

Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA

  • 5 authors
·
Oct 2, 2024

EchoingPixels: Cross-Modal Adaptive Token Reduction for Efficient Audio-Visual LLMs

Audio-Visual Large Language Models (AV-LLMs) face prohibitive computational overhead from massive audio and video tokens. Token reduction, while extensively explored for video-only LLMs, is insufficient for the audio-visual domain, as these unimodal methods cannot leverage audio-visual cross-modal synergies. Furthermore, the distinct and dynamic information densities of audio and video render static budgets per modality suboptimal. How to perform token reduction on a joint audio-visual stream thus remains an unaddressed bottleneck. To fill this gap, we introduce EchoingPixels, a framework inspired by the coexistence and interaction of visuals and sound in real-world scenes. The core of our framework is the Cross-Modal Semantic Sieve (CS2), a module enabling early audio-visual interaction. Instead of compressing modalities independently, CS2 co-attends to the joint multimodal stream and reduces tokens from an entire combined pool of audio-visual tokens rather than using fixed budgets per modality. This single-pool approach allows it to adaptively allocate the token budget across both modalities and dynamically identify salient tokens in concert. To ensure this aggressive reduction preserves the vital temporal modeling capability, we co-design a Synchronization-Augmented RoPE (Sync-RoPE) to maintain critical temporal relationships for the sparsely selected tokens. Extensive experiments demonstrate that EchoingPixels achieves performance comparable to strong baselines using only 5-20% of the original tokens, with a 2-3x speedup and memory reduction.

  • 6 authors
·
Dec 11, 2025

OmniBind: Large-scale Omni Multimodal Representation via Binding Spaces

Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.

  • 8 authors
·
Jul 16, 2024 3

CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval

Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.

  • 5 authors
·
Jun 6, 2025

FedNano: Toward Lightweight Federated Tuning for Pretrained Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) excel in tasks like multimodal reasoning and cross-modal retrieval but face deployment challenges in real-world scenarios due to distributed multimodal data and strict privacy requirements. Federated Learning (FL) offers a solution by enabling collaborative model training without centralizing data. However, realizing FL for MLLMs presents significant challenges, including high computational demands, limited client capacity, substantial communication costs, and heterogeneous client data. Existing FL methods assume client-side deployment of full models, an assumption that breaks down for large-scale MLLMs due to their massive size and communication demands. To address these limitations, we propose FedNano, the first FL framework that centralizes the LLM on the server while introducing NanoEdge, a lightweight module for client-specific adaptation. NanoEdge employs modality-specific encoders, connectors, and trainable NanoAdapters with low-rank adaptation. This design eliminates the need to deploy LLM on clients, reducing client-side storage by 95%, and limiting communication overhead to only 0.01% of the model parameters. By transmitting only compact NanoAdapter updates, FedNano handles heterogeneous client data and resource constraints while preserving privacy. Experiments demonstrate that FedNano outperforms prior FL baselines, bridging the gap between MLLM scale and FL feasibility, and enabling scalable, decentralized multimodal AI systems.

  • 6 authors
·
Jun 12, 2025 2

Lightweight In-Context Tuning for Multimodal Unified Models

In-context learning (ICL) involves reasoning from given contextual examples. As more modalities comes, this procedure is becoming more challenging as the interleaved input modalities convolutes the understanding process. This is exemplified by the observation that multimodal models often struggle to effectively extrapolate from contextual examples to perform ICL. To address these challenges, we introduce MultiModal In-conteXt Tuning (M^2IXT), a lightweight module to enhance the ICL capabilities of multimodal unified models. The proposed M^2IXT module perceives an expandable context window to incorporate various labeled examples of multiple modalities (e.g., text, image, and coordinates). It can be prepended to various multimodal unified models (e.g., OFA, Unival, LLaVA) of different architectures and trained via a mixed-tasks strategy to enable rapid few-shot adaption on multiple tasks and datasets. When tuned on as little as 50K multimodal data, M^2IXT can boost the few-shot ICL performance significantly (e.g., 18\% relative increase for OFA), and obtained state-of-the-art results across an array of tasks including visual question answering, image captioning, visual grounding, and visual entailment, while being considerably small in terms of model parameters (e.g., sim20times smaller than Flamingo or MMICL), highlighting the flexibility and effectiveness of M^2IXT as a multimodal in-context learner.

  • 4 authors
·
Oct 8, 2023

Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion

Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.

  • 5 authors
·
Feb 6, 2025

V2A-Mapper: A Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models

Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.

  • 5 authors
·
Aug 18, 2023

Sample-efficient Integration of New Modalities into Large Language Models

Multimodal foundation models can process several modalities. However, since the space of possible modalities is large and evolving over time, training a model from scratch to encompass all modalities is unfeasible. Moreover, integrating a modality into a pre-existing foundation model currently requires a significant amount of paired data, which is often not available for low-resource modalities. In this paper, we introduce a method for sample-efficient modality integration (SEMI) into Large Language Models (LLMs). To this end, we devise a hypernetwork that can adapt a shared projector -- placed between modality-specific encoders and an LLM -- to any modality. The hypernetwork, trained on high-resource modalities (i.e., text, speech, audio, video), is conditioned on a few samples from any arbitrary modality at inference time to generate a suitable adapter. To increase the diversity of training modalities, we artificially multiply the number of encoders through isometric transformations. We find that SEMI achieves a significant boost in sample efficiency during few-shot integration of new modalities (i.e., satellite images, astronomical images, inertial measurements, and molecules) with encoders of arbitrary embedding dimensionality. For instance, to reach the same accuracy as 32-shot SEMI, training the projector from scratch needs 64times more data. As a result, SEMI holds promise to extend the modality coverage of foundation models.

  • 4 authors
·
Sep 4, 2025

NExT-OMNI: Towards Any-to-Any Omnimodal Foundation Models with Discrete Flow Matching

Next-generation multimodal foundation models capable of any-to-any cross-modal generation and multi-turn interaction will serve as core components of artificial general intelligence systems, playing a pivotal role in human-machine interaction. However, most existing multimodal models remain constrained by autoregressive architectures, whose inherent limitations prevent a balanced integration of understanding and generation capabilities. Although hybrid and decoupling strategies have been explored to address these tasks within unified frameworks separately, their redundant, non-integrated designs limit their applicability to broader scenarios, such as cross-modal retrieval. In this work, we introduce NExT-OMNI, an open-source omnimodal foundation model that achieves unified modeling through discrete flow paradigms. By leveraging metric-induced probability paths and kinetic optimal velocities, NExT-OMNI natively supports any-to-any understanding and generation with enhanced response efficiency, while enabling broader application scenarios through concise unified representations rather than task-decoupled designs. Trained on large-scale interleaved text, image, video, and audio data, NExT-OMNI delivers competitive performance on multimodal generation and understanding benchmarks, while outperforming prior unified models in multi-turn multimodal interaction and cross-modal retrieval, highlighting its architectural advantages as a next-generation multimodal foundation model. To advance further research, we release training details, data protocols, and open-source both the code and model checkpoints.

  • 8 authors
·
Oct 15, 2025

Capturing Gaze Shifts for Guidance: Cross-Modal Fusion Enhancement for VLM Hallucination Mitigation

Vision language models (VLMs) often generate hallucination, i.e., content that cannot be substantiated by either textual or visual inputs. Prior work primarily attributes this to over-reliance on linguistic prior knowledge rather than visual inputs. Some methods attempt to mitigate hallucination by amplifying visual token attention proportionally to their attention scores. However, these methods overlook the visual attention sink problem, where attention is frequently misallocated to task-irrelevant visual regions, and neglect cross-modal fusion balance by enhancing only visual attention without adjusting attention to the user query. This can result in amplifying incorrect areas while failing to properly interpret the user query. To address these challenges, we propose a simple yet effective method called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-computes a holistic visual saliency map by tracking positive changes in visual attention, or "gaze shifts", during user query comprehension, and leverages this map to amplify attention to both salient visual information and the user query at each decoding step. This reduces the impact of visual attention sink, as irrelevant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion for well-integrated representation. Extensive experiments show that GIFT effectively mitigates hallucination in VLMs across both generative and classification tasks, achieving up to 20.7% improvement over greedy decoding, while maintaining general vision-language performance with low computational overhead.

  • 4 authors
·
Oct 24, 2025

Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large Language Models

Recently, growing interest has been aroused in extending the multimodal capability of large language models (LLMs), e.g., vision-language (VL) learning, which is regarded as the next milestone of artificial general intelligence. However, existing solutions are prohibitively expensive, which not only need to optimize excessive parameters, but also require another large-scale pre-training before VL instruction tuning. In this paper, we propose a novel and affordable solution for the effective VL adaption of LLMs, called Mixture-of-Modality Adaptation (MMA). Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters, to bridge the gap between LLMs and VL tasks, which also enables the joint optimization of the image and language models. Meanwhile, MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions without compromising their ability of natural language understanding. To validate MMA, we apply it to a recent LLM called LLaMA and term this formed large vision-language instructed model as LaVIN. To validate MMA and LaVIN, we conduct extensive experiments under two setups, namely multimodal science question answering and multimodal dialogue. The experimental results not only demonstrate the competitive performance and the superior training efficiency of LaVIN than existing multimodal LLMs, but also confirm its great potential as a general-purpose chatbot. More importantly, the actual expenditure of LaVIN is extremely cheap, e.g., only 1.4 training hours with 3.8M trainable parameters, greatly confirming the effectiveness of MMA. Our project is released at https://luogen1996.github.io/lavin.

  • 6 authors
·
May 24, 2023 1

Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities

Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.

  • 4 authors
·
May 28, 2024

MATE: LLM-Powered Multi-Agent Translation Environment for Accessibility Applications

Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.

  • 3 authors
·
Jun 24, 2025 1

Many-for-Many: Unify the Training of Multiple Video and Image Generation and Manipulation Tasks

Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.

  • 10 authors
·
Jun 2, 2025