new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 6

H-CoT: Hijacking the Chain-of-Thought Safety Reasoning Mechanism to Jailbreak Large Reasoning Models, Including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking

Large Reasoning Models (LRMs) have recently extended their powerful reasoning capabilities to safety checks-using chain-of-thought reasoning to decide whether a request should be answered. While this new approach offers a promising route for balancing model utility and safety, its robustness remains underexplored. To address this gap, we introduce Malicious-Educator, a benchmark that disguises extremely dangerous or malicious requests beneath seemingly legitimate educational prompts. Our experiments reveal severe security flaws in popular commercial-grade LRMs, including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking. For instance, although OpenAI's o1 model initially maintains a high refusal rate of about 98%, subsequent model updates significantly compromise its safety; and attackers can easily extract criminal strategies from DeepSeek-R1 and Gemini 2.0 Flash Thinking without any additional tricks. To further highlight these vulnerabilities, we propose Hijacking Chain-of-Thought (H-CoT), a universal and transferable attack method that leverages the model's own displayed intermediate reasoning to jailbreak its safety reasoning mechanism. Under H-CoT, refusal rates sharply decline-dropping from 98% to below 2%-and, in some instances, even transform initially cautious tones into ones that are willing to provide harmful content. We hope these findings underscore the urgent need for more robust safety mechanisms to preserve the benefits of advanced reasoning capabilities without compromising ethical standards.

  • 9 authors
·
Feb 18, 2025

Mitigating Deceptive Alignment via Self-Monitoring

Modern large language models rely on chain-of-thought (CoT) reasoning to achieve impressive performance, yet the same mechanism can amplify deceptive alignment, situations in which a model appears aligned while covertly pursuing misaligned goals. Existing safety pipelines treat deception as a black-box output to be filtered post-hoc, leaving the model free to scheme during its internal reasoning. We ask: Can deception be intercepted while the model is thinking? We answer this question, the first framework that embeds a Self-Monitor inside the CoT process itself, named CoT Monitor+. During generation, the model produces (i) ordinary reasoning steps and (ii) an internal self-evaluation signal trained to flag and suppress misaligned strategies. The signal is used as an auxiliary reward in reinforcement learning, creating a feedback loop that rewards honest reasoning and discourages hidden goals. To study deceptive alignment systematically, we introduce DeceptionBench, a five-category benchmark that probes covert alignment-faking, sycophancy, etc. We evaluate various LLMs and show that unrestricted CoT roughly aggravates the deceptive tendency. In contrast, CoT Monitor+ cuts deceptive behaviors by 43.8% on average while preserving task accuracy. Further, when the self-monitor signal replaces an external weak judge in RL fine-tuning, models exhibit substantially fewer obfuscated thoughts and retain transparency. Our project website can be found at cot-monitor-plus.github.io

  • 11 authors
·
May 24, 2025

Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models

Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.

  • 4 authors
·
Jun 16, 2025

Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation

Mitigating reward hacking--where AI systems misbehave due to flaws or misspecifications in their learning objectives--remains a key challenge in constructing capable and aligned models. We show that we can monitor a frontier reasoning model, such as OpenAI o3-mini, for reward hacking in agentic coding environments by using another LLM that observes the model's chain-of-thought (CoT) reasoning. CoT monitoring can be far more effective than monitoring agent actions and outputs alone, and we further found that a LLM weaker than o3-mini, namely GPT-4o, can effectively monitor a stronger model. Because CoT monitors can be effective at detecting exploits, it is natural to ask whether those exploits can be suppressed by incorporating a CoT monitor directly into the agent's training objective. While we show that integrating CoT monitors into the reinforcement learning reward can indeed produce more capable and more aligned agents in the low optimization regime, we find that with too much optimization, agents learn obfuscated reward hacking, hiding their intent within the CoT while still exhibiting a significant rate of reward hacking. Because it is difficult to tell when CoTs have become obfuscated, it may be necessary to pay a monitorability tax by not applying strong optimization pressures directly to the chain-of-thought, ensuring that CoTs remain monitorable and useful for detecting misaligned behavior.

  • 9 authors
·
Mar 14, 2025

What Matters For Safety Alignment?

This paper presents a comprehensive empirical study on the safety alignment capabilities. We evaluate what matters for safety alignment in LLMs and LRMs to provide essential insights for developing more secure and reliable AI systems. We systematically investigate and compare the influence of six critical intrinsic model characteristics and three external attack techniques. Our large-scale evaluation is conducted using 32 recent, popular LLMs and LRMs across thirteen distinct model families, spanning a parameter scale from 3B to 235B. The assessment leverages five established safety datasets and probes model vulnerabilities with 56 jailbreak techniques and four CoT attack strategies, resulting in 4.6M API calls. Our key empirical findings are fourfold. First, we identify the LRMs GPT-OSS-20B, Qwen3-Next-80B-A3B-Thinking, and GPT-OSS-120B as the top-three safest models, which substantiates the significant advantage of integrated reasoning and self-reflection mechanisms for robust safety alignment. Second, post-training and knowledge distillation may lead to a systematic degradation of safety alignment. We thus argue that safety must be treated as an explicit constraint or a core optimization objective during these stages, not merely subordinated to the pursuit of general capability. Third, we reveal a pronounced vulnerability: employing a CoT attack via a response prefix can elevate the attack success rate by 3.34x on average and from 0.6% to 96.3% for Seed-OSS-36B-Instruct. This critical finding underscores the safety risks inherent in text-completion interfaces and features that allow user-defined response prefixes in LLM services, highlighting an urgent need for architectural and deployment safeguards. Fourth, roleplay, prompt injection, and gradient-based search for adversarial prompts are the predominant methodologies for eliciting unaligned behaviors in modern models.

  • 6 authors
·
Jan 7

SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Capabilities

Emerging large reasoning models (LRMs), such as DeepSeek-R1 models, leverage long chain-of-thought (CoT) reasoning to generate structured intermediate steps, enhancing their reasoning capabilities. However, long CoT does not inherently guarantee safe outputs, potentially leading to harmful consequences such as the introduction of security vulnerabilities in code or the spread of misinformation. Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs. To bridge this gap, we conduct a systematic study of LRM safety. First, we investigate safety evaluators calibrated against human annotations. Using our newly developed metrics, we thoroughly assess the safety of 12 state-of-the-art LRMs on StrongReject and WildJailbreak datasets. Our results show that LRMs are not safe compared to their reasoning advance. Further, we perform a fine-grained analysis of the reasoning trace and final answer. We find that three decoding strategies-ZeroThink, LessThink, and MoreThink-can improve model safety without additional training. However, these strategies either use constrained reasoning traces or incur high inference costs. To better strengthen LRM safety, we introduce SafeChain, the first-of-its-kind safety training dataset in CoT style. We fine-tune two LRMs with SafeChain, showing that it not only enhances model safety but also preserves performance across 6 reasoning benchmarks.

  • 8 authors
·
Feb 17, 2025

Measuring Harmfulness of Computer-Using Agents

Computer-using agents (CUAs), which autonomously control computers to perform multi-step actions, might pose significant safety risks if misused. Existing benchmarks mostly evaluate language models' (LMs) safety risks in chatbots or simple tool-usage scenarios, without granting full computer access. To better evaluate CUAs' misuse risks, we introduce a new benchmark: CUAHarm. CUAHarm consists of 104 expert-written realistic misuse risks, such as disabling firewalls, leaking confidential information, launching denial-of-service attacks, or installing backdoors. We provide a sandbox environment and rule-based verifiable rewards to measure CUAs' success rates in executing these tasks (e.g., whether the firewall is indeed disabled), not just refusal. We evaluate multiple frontier open-source and proprietary LMs, such as Claude Sonnet, GPT-4o, Gemini Pro 1.5, Llama-3.3-70B, and Mistral Large 2. Surprisingly, even without carefully designed jailbreaking prompts, these frontier LMs comply with executing these malicious tasks at a high success rate (e.g., 59% for Claude 3.7 Sonnet). Newer models show higher misuse rates: Claude 3.7 Sonnet succeeds on 15% more tasks than Claude 3.5. While these models are robust to common malicious prompts (e.g., creating a bomb) in chatbot settings, they behave unsafely as CUAs. We further evaluate a leading agentic framework (UI-TARS-1.5) and find that while it improves performance, it also amplifies misuse risks. Benign variants reveal refusals stem from alignment, not capability limits. To mitigate risks, we explore using LMs to monitor CUAs' actions and chain-of-thoughts (CoTs). Monitoring CUAs is significantly harder than chatbot outputs. Monitoring CoTs yields modest gains, with average detection accuracy at only 72%. Even with hierarchical summarization, improvement is limited to 4%. CUAHarm will be released at https://github.com/db-ol/CUAHarm.

  • 4 authors
·
Jul 31, 2025

Reason2Attack: Jailbreaking Text-to-Image Models via LLM Reasoning

Text-to-Image(T2I) models typically deploy safety filters to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attack methods manually design instructions for the LLM to generate adversarial prompts, which effectively bypass safety filters while producing sensitive images, exposing safety vulnerabilities of T2I models. However, due to the LLM's limited understanding of the T2I model and its safety filters, existing methods require numerous queries to achieve a successful attack, limiting their practical applicability. To address this issue, we propose Reason2Attack(R2A), which aims to enhance the LLM's reasoning capabilities in generating adversarial prompts by incorporating the jailbreaking attack into the post-training process of the LLM. Specifically, we first propose a CoT example synthesis pipeline based on Frame Semantics, which generates adversarial prompts by identifying related terms and corresponding context illustrations. Using CoT examples generated by the pipeline, we fine-tune the LLM to understand the reasoning path and format the output structure. Subsequently, we incorporate the jailbreaking attack task into the reinforcement learning process of the LLM and design an attack process reward that considers prompt length, prompt stealthiness, and prompt effectiveness, aiming to further enhance reasoning accuracy. Extensive experiments on various T2I models show that R2A achieves a better attack success ratio while requiring fewer queries than baselines. Moreover, our adversarial prompts demonstrate strong attack transferability across both open-source and commercial T2I models.

  • 5 authors
·
Mar 23, 2025

Detecting Harmful Memes with Decoupled Understanding and Guided CoT Reasoning

Detecting harmful memes is essential for maintaining the integrity of online environments. However, current approaches often struggle with resource efficiency, flexibility, or explainability, limiting their practical deployment in content moderation systems. To address these challenges, we introduce U-CoT+, a novel framework for harmful meme detection. Instead of relying solely on prompting or fine-tuning multimodal models, we first develop a high-fidelity meme-to-text pipeline that converts visual memes into detail-preserving textual descriptions. This design decouples meme interpretation from meme classification, thus avoiding immediate reasoning over complex raw visual content and enabling resource-efficient harmful meme detection with general large language models (LLMs). Building on these textual descriptions, we further incorporate targeted, interpretable human-crafted guidelines to guide models' reasoning under zero-shot CoT prompting. As such, this framework allows for easy adaptation to different harmfulness detection criteria across platforms, regions, and over time, offering high flexibility and explainability. Extensive experiments on seven benchmark datasets validate the effectiveness of our framework, highlighting its potential for explainable and low-resource harmful meme detection using small-scale LLMs. Codes and data are available at: https://anonymous.4open.science/r/HMC-AF2B/README.md.

  • 3 authors
·
Jun 10, 2025 2

CoT Information: Improved Sample Complexity under Chain-of-Thought Supervision

Learning complex functions that involve multi-step reasoning poses a significant challenge for standard supervised learning from input-output examples. Chain-of-thought (CoT) supervision, which provides intermediate reasoning steps together with the final output, has emerged as a powerful empirical technique, underpinning much of the recent progress in the reasoning capabilities of large language models. This paper develops a statistical theory of learning under CoT supervision. A key characteristic of the CoT setting, in contrast to standard supervision, is the mismatch between the training objective (CoT risk) and the test objective (end-to-end risk). A central part of our analysis, distinguished from prior work, is explicitly linking those two types of risk to achieve sharper sample complexity bounds. This is achieved via the *CoT information measure* I_{D, h_star}^{CoT}(epsilon; calH), which quantifies the additional discriminative power gained from observing the reasoning process. The main theoretical results demonstrate how CoT supervision can yield significantly faster learning rates compared to standard E2E supervision. Specifically, it is shown that the sample complexity required to achieve a target E2E error epsilon scales as d/I_{D, h_star}^{CoT}(epsilon; calH), where d is a measure of hypothesis class complexity, which can be much faster than standard d/epsilon rates. Information-theoretic lower bounds in terms of the CoT information are also obtained. Together, these results suggest that CoT information is a fundamental measure of statistical complexity for learning under chain-of-thought supervision.

  • 3 authors
·
May 21, 2025

Training Chain-of-Thought via Latent-Variable Inference

Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a ``chain-of-thought'' (CoT) prompt. One can also improve LLMs' performance on a specific task by supervised fine-tuning, i.e., by using gradient ascent on some tunable parameters to maximize the average log-likelihood of correct answers from a labeled training set. Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers; these rationales are expensive to produce by hand. Instead, we propose a fine-tuning strategy that tries to maximize the marginal log-likelihood of generating a correct answer using CoT prompting, approximately averaging over all possible rationales. The core challenge is sampling from the posterior over rationales conditioned on the correct answer; we address it using a simple Markov-chain Monte Carlo (MCMC) expectation-maximization (EM) algorithm inspired by the self-taught reasoner (STaR), memoized wake-sleep, Markovian score climbing, and persistent contrastive divergence. This algorithm also admits a novel control-variate technique that drives the variance of our gradient estimates to zero as the model improves. Applying our technique to GSM8K and the tasks in BIG-Bench Hard, we find that this MCMC-EM fine-tuning technique typically improves the model's accuracy on held-out examples more than STaR or prompt-tuning with or without CoT.

  • 10 authors
·
Nov 28, 2023

BadChain: Backdoor Chain-of-Thought Prompting for Large Language Models

Large language models (LLMs) are shown to benefit from chain-of-thought (COT) prompting, particularly when tackling tasks that require systematic reasoning processes. On the other hand, COT prompting also poses new vulnerabilities in the form of backdoor attacks, wherein the model will output unintended malicious content under specific backdoor-triggered conditions during inference. Traditional methods for launching backdoor attacks involve either contaminating the training dataset with backdoored instances or directly manipulating the model parameters during deployment. However, these approaches are not practical for commercial LLMs that typically operate via API access. In this paper, we propose BadChain, the first backdoor attack against LLMs employing COT prompting, which does not require access to the training dataset or model parameters and imposes low computational overhead. BadChain leverages the inherent reasoning capabilities of LLMs by inserting a backdoor reasoning step into the sequence of reasoning steps of the model output, thereby altering the final response when a backdoor trigger exists in the query prompt. Empirically, we show the effectiveness of BadChain for two COT strategies across four LLMs (Llama2, GPT-3.5, PaLM2, and GPT-4) and six complex benchmark tasks encompassing arithmetic, commonsense, and symbolic reasoning. Moreover, we show that LLMs endowed with stronger reasoning capabilities exhibit higher susceptibility to BadChain, exemplified by a high average attack success rate of 97.0% across the six benchmark tasks on GPT-4. Finally, we propose two defenses based on shuffling and demonstrate their overall ineffectiveness against BadChain. Therefore, BadChain remains a severe threat to LLMs, underscoring the urgency for the development of robust and effective future defenses.

  • 6 authors
·
Jan 19, 2024