LAMS-Edit: Latent and Attention Mixing with Schedulers for Improved Content Preservation in Diffusion-Based Image and Style Editing
Abstract
LAMS-Edit combines latent and attention mixing with schedulers to improve text-to-image editing by balancing content preservation and edit application.
Text-to-Image editing using diffusion models faces challenges in balancing content preservation with edit application and handling real-image editing. To address these, we propose LAMS-Edit, leveraging intermediate states from the inversion process--an essential step in real-image editing--during edited image generation. Specifically, latent representations and attention maps from both processes are combined at each step using weighted interpolation, controlled by a scheduler. This technique, Latent and Attention Mixing with Schedulers (LAMS), integrates with Prompt-to-Prompt (P2P) to form LAMS-Edit--an extensible framework that supports precise editing with region masks and enables style transfer via LoRA. Extensive experiments demonstrate that LAMS-Edit effectively balances content preservation and edit application.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper