Degree-similar graphs and cospectral graphs
Abstract
Let G be a graph with adjacency matrix A(G) and degree matrix D(G), and let L_μ(G):=A(G)-μD(G). Two graphs G_1 and G_2 are called degree-similar if there exists an invertible matrix M such that M^{-1} A(G_1) M =A(G_2) and M^{-1} D(G_1) M =D(G_2). In this paper, we address three problems concerning degree-similar graphs proposed by Godsil and Sun. First, we present a new characterization of degree-similar graphs using degree partition, from which we derive methods and examples for constructing cospectral graphs and degree-similar graphs. Second, we construct infinite pairs of non-degree-similar trees G_1 and G_2 such that tI- L_μ(G_1) and tI-L_μ(G_2) have the same Smith normal form over Q(μ)[t], which provides a negative answer to a problem posed by Godsil and Sun. Third, we establish several invariants of degree-similar graphs and obtain results on unicyclic graphs that are degree-similar determined. Lastly we prove that for a strongly regular graph G and any two edges e and f of G, G backslash e and G backslash f have identical μ-polynomial, i.e., det(tI-L_μ(G backslash e))=det(tI-L_μ(G backslash f)), which enables the construction of pairs of non-isomorphic graphs with same μ-polynomial, where G backslash e denotes the graph obtained from G by deleting the edge e.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper