# Parameters configuration import openseespy.opensees as ops # Import OpenSeesPy for structural analysis import opsvis as opsv # Import opsvis for visualization import matplotlib.pyplot as plt # Import Matplotlib for plotting ops.wipe() # Clear any existing model ops.model('basic', '-ndm', 2, '-ndf', 3) # Define a 2D model with 3 degrees of freedom per node (DOF) # Column and girder lengths colL, girL = 4., 6. # Section properties: cross-sectional area (A) and moment of inertia (Iz) Acol, Agir = 2.e-3, 6.e-3 IzCol, IzGir = 1.6e-5, 5.4e-5 # Young's modulus (E) E = 200.e9 # Define the material property dictionary for columns and girders Ep = { 1: [2e11, 2e-3, 1.6e-5], # Columns 2: [2e11, 6e-3, 5.4e-5] # Girders } # Define the node coordinates ops.node(1, 0.0, 0.0) ops.node(2, 6.0, 0.0) ops.node(3, 12.0, 0.0) ops.node(4, 18.0, 0.0) ops.node(5, 0.0, 4.0) ops.node(6, 6.0, 4.0) ops.node(7, 12.0, 4.0) ops.node(8, 18.0, 4.0) ops.node(9, 0.0, 8.0) ops.node(10, 6.0, 8.0) ops.node(11, 12.0, 8.0) ops.node(12, 18.0, 8.0) # Define boundary conditions (supports) ops.fix(1, 1, 1, 1) ops.fix(2, 1, 1, 1) ops.fix(3, 1, 1, 1) ops.fix(4, 1, 1, 1) # Plot the model before defining elements opsv.plot_model() # Add title plt.title('plot_model before defining elements') # Define transformation type for elements (Linear) ops.geomTransf('Linear', 1) # Define column and girder elements (elastic beam-column elements) ops.element('elasticBeamColumn', 1, 1, 5, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 2, 2, 6, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 3, 3, 7, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 4, 4, 8, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 5, 5, 9, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 6, 6, 10, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 7, 7, 11, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 8, 8, 12, 2e-3, 2e11, 1.6e-5, 1) ops.element('elasticBeamColumn', 9, 5, 6, 6e-3, 2e11, 5.4e-5, 1) ops.element('elasticBeamColumn', 10, 6, 7, 6e-3, 2e11, 5.4e-5, 1) ops.element('elasticBeamColumn', 11, 7, 8, 6e-3, 2e11, 5.4e-5, 1) ops.element('elasticBeamColumn', 12, 9, 10, 6e-3, 2e11, 5.4e-5, 1) ops.element('elasticBeamColumn', 13, 10, 11, 6e-3, 2e11, 5.4e-5, 1) ops.element('elasticBeamColumn', 14, 11, 12, 6e-3, 2e11, 5.4e-5, 1) # Define external loads Px = 2e3 # Create a dictionary to store element loads Ew = { 9: ['-beamUniform', 0.0, 0.0], 10: ['-beamUniform', 0.0, 0.0], 11: ['-beamUniform', 0.0, 0.0], 12: ['-beamUniform', 0.0, 0.0], 13: ['-beamUniform', 0.0, 0.0], 14: ['-beamUniform', 0.0, 0.0], } # Define time series for constant loads ops.timeSeries('Constant', 1) ops.pattern('Plain', 1, 1) # Applying point loads ops.load(5, Px, 0.0, 0.0) ops.load(9, Px, 0.0, 0.0) # Applying distributed loads for etag in Ew: ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2]) # Analysis settings ops.constraints('Transformation') # Apply transformation constraints ops.numberer('RCM') # Renumber the nodes using Reverse Cuthill-McKee (RCM) ops.system('BandGeneral') # Define the solution algorithm ops.test('NormDispIncr', 1.0e-6, 6, 2) # Convergence test criteria ops.algorithm('Linear') # Use linear algorithm for solving ops.integrator('LoadControl', 1) # Control load increments ops.analysis('Static') # Define a static analysis ops.analyze(1) # Perform the analysis # Print the model data ops.printModel() # Plot the model after defining elements opsv.plot_model() plt.title('plot_model after defining elements') # Plot the applied loads on the model in 2D opsv.plot_loads_2d(nep=10, # Number of points along each element sfac=1, # Scale factor for loads fig_wi_he=(10, 5), # Width and height of the figure fig_lbrt=(0.1, 0.1, 0.9, 0.9), # Left, bottom, right, top margins fmt_model_loads={'color': 'red', 'linewidth': 1.5}, # Formatting for load arrows node_supports=True, # Display node supports truss_node_offset=0.05, # Offset for truss elements ax=None) # Matplotlib axis, None to use current axis # Plot deformations (scaled) after analysis opsv.plot_defo() # Plot internal force diagrams: N (axial), V (shear), M (moment) sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5 # Scale factors for internal force diagrams # Plot axial force distribution opsv.section_force_diagram_2d('N', sfacN) plt.title('Axial force distribution') # Plot shear force distribution opsv.section_force_diagram_2d('T', sfacV) plt.title('Shear force distribution') # Plot bending moment distribution opsv.section_force_diagram_2d('M', sfacM) plt.title('Bending moment distribution') # Show all plots plt.show() # Exit the program exit()