# Parameters configuration import openseespy.opensees as ops # Import OpenSeesPy for structural analysis import opsvis as opsv # Import opsvis for visualization import matplotlib.pyplot as plt # Import Matplotlib for plotting ops.wipe() # Clear any existing model ops.model('basic', '-ndm', 2, '-ndf', 3) # Define a 2D model with 3 degrees of freedom per node (DOF) # Column and girder lengths colL, girL = 4., 6. # Section properties: cross-sectional area (A) and moment of inertia (Iz) Acol, Agir = 2.e-3, 6.e-3 IzCol, IzGir = 1.6e-5, 5.4e-5 # Young's modulus (E) E = 200.e9 # Define the material property dictionary for columns and girders Ep = { 1: [2e11, 2e-3, 1.6e-5], # Column 1 2: [2e11, 2e-3, 1.6e-5], # Column 2 3: [2e11, 2e-3, 1.6e-5], # Column 3 4: [2e11, 2e-3, 1.6e-5], # Column 4 5: [2e11, 2e-3, 1.6e-5], # Column 5 6: [2e11, 6e-3, 5.4e-5], # Girder 1 7: [2e11, 6e-3, 5.4e-5], # Girder 2 8: [2e11, 6e-3, 5.4e-5] # Girder 3 } # Define the node coordinates ops.node(1, 0, 0) # Node 1 ops.node(2, 0, 4) # Node 2 ops.node(3, 6, 0) # Node 3 ops.node(4, 6, 4) # Node 4 ops.node(5, 6, 8) # Node 5 ops.node(6, 12, 0) # Node 6 ops.node(7, 12, 4) # Node 7 ops.node(8, 12, 8) # Node 8 # Define boundary conditions (supports) ops.fix(1, 1, 1, 1) # Node 1 fixed ops.fix(3, 1, 1, 1) # Node 3 fixed ops.fix(6, 1, 1, 1) # Node 6 fixed # Plot the model before defining elements opsv.plot_model() # Add title plt.title('plot_model before defining elements') # Define transformation type for elements (Linear) ops.geomTransf('Linear', 1) # Define column and girder elements (elastic beam-column elements) ops.element('elasticBeamColumn', 1, 1, 2, 2e-3, 2e11, 1.6e-5, 1) # Column 1 ops.element('elasticBeamColumn', 2, 3, 4, 2e-3, 2e11, 1.6e-5, 1) # Column 2 ops.element('elasticBeamColumn', 3, 4, 5, 2e-3, 2e11, 1.6e-5, 1) # Column 3 ops.element('elasticBeamColumn', 4, 6, 7, 2e-3, 2e11, 1.6e-5, 1) # Column 4 ops.element('elasticBeamColumn', 5, 7, 8, 2e-3, 2e11, 1.6e-5, 1) # Column 5 ops.element('elasticBeamColumn', 6, 2, 4, 6e-3, 2e11, 5.4e-5, 1) # Girder 1 ops.element('elasticBeamColumn', 7, 4, 7, 6e-3, 2e11, 5.4e-5, 1) # Girder 2 ops.element('elasticBeamColumn', 8, 5, 8, 6e-3, 2e11, 5.4e-5, 1) # Girder 3 # Define external loads Px = 2e3 # Horizontal point load # Create a dictionary to store element loads Ew = {} # No distributed loads provided # Define time series for constant loads ops.timeSeries('Constant', 1) # Define load pattern using the constant time series ops.pattern('Plain', 1, 1) # Applying point loads ops.load(2, Px, 0.0, 0.0) # Point load at node 2 ops.load(5, Px, 0.0, 0.0) # Point load at node 5 # Applying distributed loads for etag in Ew: ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2]) # Analysis settings ops.constraints('Transformation') # Apply transformation constraints ops.numberer('RCM') # Renumber the nodes using Reverse Cuthill-McKee (RCM) ops.system('BandGeneral') # Define the solution algorithm ops.test('NormDispIncr', 1.0e-6, 6, 2) # Convergence test criteria ops.algorithm('Linear') # Use linear algorithm for solving ops.integrator('LoadControl', 1) # Control load increments ops.analysis('Static') # Define a static analysis ops.analyze(1) # Perform the analysis # Print the model data ops.printModel() # Plot the model after defining elements opsv.plot_model() plt.title('plot_model after defining elements') # Plot the applied loads on the model in 2D opsv.plot_loads_2d(nep=10, # Number of points along each element sfac=1, # Scale factor for loads fig_wi_he=(10, 5), # Width and height of the figure fig_lbrt=(0.1, 0.1, 0.9, 0.9), # Left, bottom, right, top margins fmt_model_loads={'color': 'red', 'linewidth': 1.5}, # Formatting for load arrows node_supports=True, # Display node supports truss_node_offset=0.05, # Offset for truss elements ax=None) # Matplotlib axis, None to use current axis # Plot deformations (scaled) after analysis opsv.plot_defo() # Plot internal force diagrams: N (axial), V (shear), M (moment) sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5 # Scale factors for internal force diagrams # Plot axial force distribution opsv.section_force_diagram_2d('N', sfacN) plt.title('Axial force distribution') # Plot shear force distribution opsv.section_force_diagram_2d('T', sfacV) plt.title('Shear force distribution') # Plot bending moment distribution opsv.section_force_diagram_2d('M', sfacM) plt.title('Bending moment distribution') # Show all plots plt.show() # Exit the program exit()