SAWP20 / code /4.py
Certifiedloverboy
Add SAWP-20 benchmark dataset with ground truth code solutions, schematics, and problem descriptions
be06037
# Parameters configuration
import openseespy.opensees as ops # Import OpenSeesPy for structural analysis
import opsvis as opsv # Import opsvis for visualization
import matplotlib.pyplot as plt # Import Matplotlib for plotting
ops.wipe() # Clear any existing model
ops.model('basic', '-ndm', 2, '-ndf', 3) # Define a 2D model with 3 degrees of freedom per node (DOF)
# Column and girder lengths
colL, girL = 4.e0, 6.e0
# Section properties: cross-sectional area (A) and moment of inertia (Iz)
Acol, Agir = 2.e-3, 6.e-3
IzCol, IzGir = 1.6e-5, 5.4e-5
# Young's modulus (E)
E = 2.e11
# Define the material property dictionary for columns and girders
Ep = {
1: [2e11, 2e-3, 1.6e-5], # Column 1: E, Acol, IzCol
2: [2e11, 2e-3, 1.6e-5], # Column 2: E, Acol, IzCol
3: [2e11, 6e-3, 5.4e-5] # Girder: E, Agir, IzGir
}
# Define the node coordinates
ops.node(1, 0, 0) # Node 1: base of left column
ops.node(2, 0, 4) # Node 2: top of left column
ops.node(3, 6, 0) # Node 3: base of right column
ops.node(4, 6, 4) # Node 4: top of right column
# Define boundary conditions (supports)
ops.fix(1, 1, 1, 1) # Fix node 1 in all DOFs
ops.fix(3, 1, 1, 1) # Fix node 3 in all DOFs
# Plot the model before defining elements
opsv.plot_model()
# Add title
plt.title('plot_model before defining elements')
# Define transformation type for elements (Linear)
ops.geomTransf('Linear', 1)
# Define column and girder elements (elastic beam-column elements)
ops.element('elasticBeamColumn', 1, 1, 2, 2e-3, 2e11, 1.6e-5, 1) # Column 1
ops.element('elasticBeamColumn', 2, 3, 4, 2e-3, 2e11, 1.6e-5, 1) # Column 2
ops.element('elasticBeamColumn', 3, 2, 4, 6e-3, 2e11, 5.4e-5, 1) # Girder
# Define external loads
Px = 0.0 # No point load in the x direction
Wy = -1e4 # Uniform distributed load in the y direction
Wx = 0.0 # No distributed load in the x direction
# Create a dictionary to store element loads
Ew = {
3: ['-beamUniform', Wy, Wx] # Distributed load applied on the girder
}
# Define time series for constant loads
ops.timeSeries('Constant', 1)
# Define load pattern using the constant time series
ops.pattern('Plain', 1, 1)
# Applying point loads (no point loads in this scenario)
# Applying distributed loads
for etag in Ew:
ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2])
# Analysis settings
ops.constraints('Transformation') # Apply transformation constraints
ops.numberer('RCM') # Renumber the nodes using Reverse Cuthill-McKee (RCM)
ops.system('BandGeneral') # Define the solution algorithm
ops.test('NormDispIncr', 1.0e-6, 6, 2) # Convergence test criteria
ops.algorithm('Linear') # Use linear algorithm for solving
ops.integrator('LoadControl', 1) # Control load increments
ops.analysis('Static') # Define a static analysis
ops.analyze(1) # Perform the analysis
# Print the model data
ops.printModel()
# Plot the model after defining elements
opsv.plot_model()
plt.title('plot_model after defining elements')
# Plot the applied loads on the model in 2D
opsv.plot_loads_2d(nep=10, # Number of points along each element
sfac=1, # Scale factor for loads
fig_wi_he=(10, 5), # Width and height of the figure
fig_lbrt=(0.1, 0.1, 0.9, 0.9), # Left, bottom, right, top margins
fmt_model_loads={'color': 'red', 'linewidth': 1.5}, # Formatting for load arrows
node_supports=True, # Display node supports
truss_node_offset=0.05, # Offset for truss elements
ax=None) # Matplotlib axis, None to use current axis
# Plot deformations (scaled) after analysis
opsv.plot_defo()
# Plot internal force diagrams: N (axial), V (shear), M (moment)
sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5 # Scale factors for internal force diagrams
# Plot axial force distribution
opsv.section_force_diagram_2d('N', sfacN)
plt.title('Axial force distribution')
# Plot shear force distribution
opsv.section_force_diagram_2d('T', sfacV)
plt.title('Shear force distribution')
# Plot bending moment distribution
opsv.section_force_diagram_2d('M', sfacM)
plt.title('Bending moment distribution')
# Show all plots
plt.show()
# Exit the program
exit()