Certifiedloverboy
Add SAWP-20 benchmark dataset with ground truth code solutions, schematics, and problem descriptions
be06037
| # Parameters configuration | |
| import openseespy.opensees as ops # Import OpenSeesPy for structural analysis | |
| import opsvis as opsv # Import opsvis for visualization | |
| import matplotlib.pyplot as plt # Import Matplotlib for plotting | |
| ops.wipe() # Clear any existing model | |
| ops.model('basic', '-ndm', 2, '-ndf', 3) # Define a 2D model with 3 degrees of freedom per node (DOF) | |
| # Column and girder lengths | |
| colL, girL = 4.e0, 6.e0 | |
| # Section properties: cross-sectional area (A) and moment of inertia (Iz) | |
| Acol, Agir = 2.e-3, 6.e-3 | |
| IzCol, IzGir = 1.6e-5, 5.4e-5 | |
| # Young's modulus (E) | |
| E = 2.e11 | |
| # Define the material property dictionary for columns and girders | |
| Ep = { | |
| 1: [2e11, 2e-3, 1.6e-5], # Column 1: E, Acol, IzCol | |
| 2: [2e11, 2e-3, 1.6e-5], # Column 2: E, Acol, IzCol | |
| 3: [2e11, 6e-3, 5.4e-5] # Girder: E, Agir, IzGir | |
| } | |
| # Define the node coordinates | |
| ops.node(1, 0, 0) # Node 1: base of left column | |
| ops.node(2, 0, 4) # Node 2: top of left column | |
| ops.node(3, 6, 0) # Node 3: base of right column | |
| ops.node(4, 6, 4) # Node 4: top of right column | |
| # Define boundary conditions (supports) | |
| ops.fix(1, 1, 1, 1) # Fix node 1 in all DOFs | |
| ops.fix(3, 1, 1, 1) # Fix node 3 in all DOFs | |
| # Plot the model before defining elements | |
| opsv.plot_model() | |
| # Add title | |
| plt.title('plot_model before defining elements') | |
| # Define transformation type for elements (Linear) | |
| ops.geomTransf('Linear', 1) | |
| # Define column and girder elements (elastic beam-column elements) | |
| ops.element('elasticBeamColumn', 1, 1, 2, 2e-3, 2e11, 1.6e-5, 1) # Column 1 | |
| ops.element('elasticBeamColumn', 2, 3, 4, 2e-3, 2e11, 1.6e-5, 1) # Column 2 | |
| ops.element('elasticBeamColumn', 3, 2, 4, 6e-3, 2e11, 5.4e-5, 1) # Girder | |
| # Define external loads | |
| Px = 0.0 # No point load in the x direction | |
| Wy = -1e4 # Uniform distributed load in the y direction | |
| Wx = 0.0 # No distributed load in the x direction | |
| # Create a dictionary to store element loads | |
| Ew = { | |
| 3: ['-beamUniform', Wy, Wx] # Distributed load applied on the girder | |
| } | |
| # Define time series for constant loads | |
| ops.timeSeries('Constant', 1) | |
| # Define load pattern using the constant time series | |
| ops.pattern('Plain', 1, 1) | |
| # Applying point loads (no point loads in this scenario) | |
| # Applying distributed loads | |
| for etag in Ew: | |
| ops.eleLoad('-ele', etag, '-type', Ew[etag][0], Ew[etag][1], Ew[etag][2]) | |
| # Analysis settings | |
| ops.constraints('Transformation') # Apply transformation constraints | |
| ops.numberer('RCM') # Renumber the nodes using Reverse Cuthill-McKee (RCM) | |
| ops.system('BandGeneral') # Define the solution algorithm | |
| ops.test('NormDispIncr', 1.0e-6, 6, 2) # Convergence test criteria | |
| ops.algorithm('Linear') # Use linear algorithm for solving | |
| ops.integrator('LoadControl', 1) # Control load increments | |
| ops.analysis('Static') # Define a static analysis | |
| ops.analyze(1) # Perform the analysis | |
| # Print the model data | |
| ops.printModel() | |
| # Plot the model after defining elements | |
| opsv.plot_model() | |
| plt.title('plot_model after defining elements') | |
| # Plot the applied loads on the model in 2D | |
| opsv.plot_loads_2d(nep=10, # Number of points along each element | |
| sfac=1, # Scale factor for loads | |
| fig_wi_he=(10, 5), # Width and height of the figure | |
| fig_lbrt=(0.1, 0.1, 0.9, 0.9), # Left, bottom, right, top margins | |
| fmt_model_loads={'color': 'red', 'linewidth': 1.5}, # Formatting for load arrows | |
| node_supports=True, # Display node supports | |
| truss_node_offset=0.05, # Offset for truss elements | |
| ax=None) # Matplotlib axis, None to use current axis | |
| # Plot deformations (scaled) after analysis | |
| opsv.plot_defo() | |
| # Plot internal force diagrams: N (axial), V (shear), M (moment) | |
| sfacN, sfacV, sfacM = 5.e-5, 5.e-5, 5.e-5 # Scale factors for internal force diagrams | |
| # Plot axial force distribution | |
| opsv.section_force_diagram_2d('N', sfacN) | |
| plt.title('Axial force distribution') | |
| # Plot shear force distribution | |
| opsv.section_force_diagram_2d('T', sfacV) | |
| plt.title('Shear force distribution') | |
| # Plot bending moment distribution | |
| opsv.section_force_diagram_2d('M', sfacM) | |
| plt.title('Bending moment distribution') | |
| # Show all plots | |
| plt.show() | |
| # Exit the program | |
| exit() |